

Concours d'accès en 1^{ère} année des ENSA Maroc Juillet 2015

Epreuve de Mathématiques

Durée : 1H30 min

Q6.	li:	$\underset{=0}{m} \frac{e^{10 x} - e^{7 x}}{x} =$		
A) 1	B) 2	C) 3 X	Commission of	D) 4
Q7.	lim ($\left(1 + \sin^2\left(\frac{1}{x}\right)\right) \ln x =$		
A) 1	100	C) -∞ X	D) +0	
Q8.	1	$\frac{e^x}{(10-3e^x)^2} dx =$		
$XA)\frac{1}{3}(\frac{1}{10-3e}-\frac{1}{7})$	B) $\frac{1}{2}(\frac{1}{10}$	$\frac{1}{3\theta} + \frac{1}{3}$ (1) $\frac{1}{3} (\frac{1}{10} - \frac{1}{3})$	$\frac{1}{e} - \frac{1}{7}$	$D) \frac{1}{10-3e}$
Q9-	J	$\int_{1}^{x} \left(\frac{\ln x}{x}\right)^{x} dx =$	-	
$A) = \frac{5}{e}$	B) 2 + 5/e	C) 5	D) 2 -	- X
Qio.	J.º	$\frac{1}{x^2 + 3x + 2} dx =$	9	2_
A) In (X	B) 4/3	C) ln (3)	D) 3	2

Le plan complexe P est rapporté au repère orthonormal direct (0, 7,7); unité graphique scm. Soient A B et C les points d'affixes respectives a = 2, $b = 3 + i\sqrt{3}$ et $c = 2i\sqrt{3}$.

Q16. La mosure de l'angle ABC vaut

A) 90°

B) 95°

C) 85°

D) 180°

Q17. L'affixe w du centre fi du cercle circonscrit au triangle ABC est

A) 1 − i√3

B) 1 + √3 X

C) -1 + €√3

D) $-1 - i\sqrt{3}$

Qs8. On note An le point d'affine en, où en est la suite de nombres complexes, de premier terme zo = 0, et telle que, pour tout entier naturel n:

$$z_{n+1} = \frac{1 + i\sqrt{3}}{2} z_n + 2.$$

On considère la suite $t_n = x_n - w$.

En faisant remarquer que w est solution de l'équation $x = \frac{1 + 1\sqrt{3}}{2}$ x + 2 La suite t_n vérifie la relation:

A) $t_{n+1} = \frac{1 + i\sqrt{3}}{2} t_n$ B) $t_{n+1} = \frac{1 - i\sqrt{3}}{2} t_n$ C) $1 + i\sqrt{3} t_{n+1} = 2 t_n$ D) $1 + i\sqrt{3} t_n = 2 t_{n+1}$

Q19. En déduire que pour tout entier naturel n, on a

 $A)A_{n+6}=2A_n$

 $B) A_{n+6} = -A_n$

X C) An+6 = An

 $D) A_{n+6} = -2 A_n$

Q20. La valeur de A2015 est

A) $-1 + 2i\sqrt{3}$

B) 3 + 1√3

C) 31√2

Probleme 1

On consillere plusieurs urnes de boules $U_1, U_2, \dots, U_n, \dots$ telles que: la première urne, U_1 , contient trois boules jaunes et deux boules vertes et chacune des autres urnes contient deux boules jaunes et deux boules vertes.

On réalise des tirages successifs de la manière suivante:

- on tire au hasard une boule de U1:
- on place la boule tirée de U₁ dans U₂, puis on tire une boule dans U₂;
 on place la boule tirée de U₂ dans U₃, puis on tire une boule dans U₃;

Pour tout entier $n \ge 1$, on note E_n l'événement "la boule tirée de U_n est verte" et $P_n = P(E_n)$ sa

probabilité.	U's			
Q11. La valeur de P1 est	-			
A) 0,54	B) 0,40 X	C) 0.44	D) 0,64	
Qsa. Sachant qu'on a tire boule verte de U_2 est	une boule verte de U ₁ et	qu'on l'a placée dans U	2, la probabilité de tirer une	
A) 0,60 X	B) 0,83	C) 0,80	D) 0,33	
Q13. La valeur de P2 est	min Hall			
A) 0,44	B) 0,46	C) 0.48	D) 0,45	
Q14. La relation entre P_n	et P _{n+1} est	2		
A) $P_{n+1} = 5 + 5P_n$	B) $P_{n+1} = 2 + 5P_n$	$C) P_{n+1} = 5 + 2P$	D) $5 P_{n+1} = 2 + P_n$ X	
Q15. En étudiant le comp tirage on a	portement de la suite P _n , pe	eut-on confirmer qu'a	rès un grand nombre de	
A) une chance sur deux de tirer une boule verte	B) une chance sur trois de tirer une boule verte	C) une chance sur quatre de tirer une boule verte	D) une chance sur cinq de tirer une boule verte	