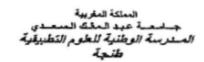
ROYAUME DU MAROC VIVERSITE ABDELMALEK ESSAADI Ecole Nationale des Sciences Appliquées Tanger



Tanger le 23/07/2010

CONCOURS D'ENTREE EN 1^{ère} ANNEE DU CYCLE PREPARATOIRE

Epreuve de Maths

(Nombre de pages 4 et une fiche réponse à remettre au surveillant, correctement remplie, à la fin de l'épreuve)

Parmi les réponses proposées, une seule est juste. Pour chaque question répondre sur la fiche réponse par une croix dans la case correspondante.

(Barème : une réponse juste : +1, une réponse fausse : -1, pas de réponse : 0)

	The state of the s
1) Soit S(m) la fonction qui associe à chaque Réel m strictement positif, la surface délimitée par le graphe $y = \frac{1}{x}$ et les droites x = m et $x = 2m$ Alors	a) S(m) est strictement croissante b) S(m) est strictement décroissante Xc) S(m) est une fonction constante
2) $\lim_{h \to 0} \frac{1}{h} \ln(1 + \frac{h}{\pi}) =$	(a) $\frac{1}{\pi}$ b) 0 c) n'existe pas
$\lim_{n\to\infty} (\sqrt[3]{3})(\sqrt[3]{3})\cdots(\sqrt[2]{3})=$	a) ∛ 6 b) 1 Xc) ∛ 9
4) Soit $f(x) = x^{\ln x}$. La tangente à la courbe de fau point $x = e$ est donnée par	a) $y = e(x - e)$ b) $y = x$ (c) $y = 2x - e$
Soit $(x_n)_n$ une suite numérique telle que $x_0 = 1$. Alors $\sum_{i=1}^{n} (x_{i-1} + \frac{1}{2}) =$	(Xa) $\frac{3n}{2}$ (b) $\frac{n^3 + 5n}{4}$ (c) $\frac{2n-1}{4}$
6) Soit Soit $(u_n)_n$ une suite numérique à termes strictement positifs vérifiant $(u_n)^{\frac{1}{n}} \le M$; $\forall n \in \mathbb{N}$ tel que $M < 1$. On	

Concours d'entrée en 1 ter année du Cycle Préparatoire de l'ENSA de Tanger - Epreuve de Physique-Chimie 1/4

définit la suite $(W_n)_n$ par $W_n = \sum_{k=0}^n u_k$. On	a) Sculement II		
considère les assertions suivantes : (1) $(W_n)_n$ est convergente	Xb) Seulement II et III		
(II) (u _n) _n est bornée	c) I, II et III.		
(III) $\lim u = 0$			
Laquelle (Lesquelles) des assertions est (sont) VRAIE(S). ?			
7) Pour quelle valeur de x, la fonction définie	3 12 2		
par $f(x) = \int_{0}^{x^2 - 1x} e^{r^2} dt$ prend une valeur	$(X_a) \frac{3}{2}$ b) -2		
par $f(x) = \int_{2}^{2} e^{-at}$ prend une valeur	c) 2		
minimale			
8) Soit $f(x) = \int_0^x \frac{1}{\sqrt{t^3 + 2}} dt$	a) $f(0) = 0$ Xb) $f'(1) = \frac{1}{2\sqrt{3}}$		
Laquelle parmi ces trois assertions est FAUSSE?	c) f(1) > 0		
9) $\lim_{x\to 0} \frac{e^{2x}-1}{\tan x} =$	a) N'existe pas Xb) 2 c) 0		
10) $\lim_{x \to 1} \frac{1}{x^2 - 1} \int_{1}^{x} e^{u^2} du =$	$a)0$ Xb) $\frac{e}{2}$		
	c) N'existe pas		
11) Soit f une fonction deux fois dérivables telle que " $f''(x) = 2 f'(x)$ avec $f'(0) = f(0) = e$ Alors $f(1) =$	a ³		
12) $\int_{1}^{2} (\ln x)^2 dx$	a) $\frac{(\ln 2)^3}{3}$ Xb) $2(1-\ln 2)^2$		
-	$c) \frac{8}{3}$		
	a) $3x^2g(x^3)$		
13) Soient f,g et h trois fonctions telles que:			
	(Xb) $6xg(x^3) + 9x^4f(x^6)$		
$f'(x) = g(x) \qquad \text{Alors } h''(x) =$	c) $3x^2g(x^3)+6x^3f(x^5)$		
$g'(x) = f(x^2)$			
Soit $(V_n)_{n\geq 3}$ la suite définie par			
	$(a) \frac{1}{a}$ b) $\frac{1}{a}$ c) $+\infty$		
$14) V_n = \int_1^n \frac{x}{(1+x^2)^2} dx$	(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $+\infty$		
Alors $\lim_{n\to\infty} V_n =$			

Soit $H(x) = \int_{\sqrt{x}}^{e^x} \frac{1}{\sqrt{\ln t}} dt$, alors $H'(x) =$	a) $\frac{1}{\sqrt{\ln x}}$ $\frac{\mathbf{X}b}{\sqrt{x}} = \frac{1}{\sqrt{2x \ln x}}$ c) $\frac{e^x}{\sqrt{\ln x}} = -\sqrt{\frac{x}{\ln x}}$
Soit $h(x) = \sqrt{e^x - 1}$. Une primitive de $h(x)$ est donnée par	a) $2(x - \arctan x)$ b) $\sin \sqrt{h(x)}$ (c) $2h(x) - 2\arctan h(x)$
17) La fonction $f(x) = a \cos x + b \sin x \text{ admet comme}$ amplitude le nombre	(a) $\sqrt{a^2 + b^2}$ (b) $a + b$ (c) $\frac{a + b}{2}$
Soit B= $\{u, v, w\}$ une base de (IR ³ ,+,·). On considère les familles suivantes $A = \{u-v, u+w, v+w\}$ $B = \{u, v-2u, v\}$ 18) $C = \{u+v+w, v+w, w\}$ $D = \{v+w, -v, -w\}$ Alors laquelle (ou lesquelles) des familles forme une base ?	Xa) Seulement B b) Seulement A et C c) Seulement A et D
19) Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid x - 3z = 0\}$. Lequel des systèmes suivants forme une base pour F?	a) {(3,0,1)} Xb) {(3,0,1);(0,1,0)} c) {(3,0,1);(1,0,3);(0,1,3)}
On considère les ensembles suivants $A = \{(x, y, z) \in \mathbb{R}^3 / z = 0\}$ $B = \{(x, y, z) \in \mathbb{R}^3 / x^2 - 2y + z = 1\}$ $20) C = \{(x, y, z) \in \mathbb{R}^3 / xz - y = 0\}$ $D = \{(x, y, z) \in \mathbb{R}^3 / x - y + z = 0\}$ Lesquels parmi ces ensembles sont des sous espaces vectoriels de \mathbb{R}^3 ? $21) \text{ Soit W} = \left\{(x, y, z) \in \mathbb{R}^3 / x + y - z = 0 \text{ et } 2x - y = 0\right\}$	a) Seulement A et C Xb) Seulement A et D c) Seulement A,C et D (a) dimW=1 b) dimW=2 c) dimW=3
22)	

Soit A une matrice carrée d'ordre n vérifiant	
$A^3 - A = -I_n$. Soit $B = (I_n - A)(I_n + A)$ On considère les égalités suivantes (I) $B^{-1} = A$ (II) $B^{-1} = (I_n - A)^{-1}(I_n + A)^{-1}$ (III) $B^{-1} = (I_n + A)^{-1}(I_n - A)^{-1}$ Parmi lesquelles ou laquelle de ces égalités est VRAIE?	Xa) (I) et (III) b) Seulement (II) c) Seulement (III)
Soient A, B deux matrices carrée d'ordre n, telle que $I_n - AB$ est inversible. Alors $(I_n - BA)^{-1} =$	a) $(I_n - AB)^{-1}$ b) $B(I_n - AB)^{-1}A$ x c) $I_n + B(I_n - AB)^{-1}A$
24) Soit g une fonction décroissante sur $]0, +\infty[$, et $G(x) = \int_0^x tg'(t)dt$ définie sur $]0, +\infty[$. Laquelle parmi ces trois assertions est FAUSSE?	a) $G(x) \le 0$ pour tout $x > 0$ b) G est croissante sur $]0,+\infty[$
$\int_{\cos x} \frac{1}{\cos x} dx =$	a) $\ln(\cos x) + K$ (b) $\ln(\tan x + \frac{1}{\cos x}) + K$ c) $\ln \left \frac{1}{\sin x}\right + K$ <i>K</i> une constante

Concours d'entrée en 14te année du Cycle Préparatoire de l'ENSA de Tanger - Epreuve de Physique-Chimie 4/4

منتديات علوم الحياة و الأرض بأصيلة