

Sciences de la Vie et de la Terre

Géologie - La granitisation Cours

Professeur: Mr BAHSINA Najib

Sommaire

I- Introduction

II- Origine et mise en place du granite d'anatexie

- 2-1/ Mise en évidence du lien entre les roches métamorphiques et le granite
- 2-2/ Mise en place du granite d'anatexie dans les zones de collision

III- Types de roches

IV- Le granite

I- Introduction

Le granite et les roches granitiques constituent la majeure partie de la croûte continentale.

Le granite est une roche plutonique issue d'un refroidissement lent d'un magma en profondeur, ce qui lui confère sa texture grenue à grands cristaux.

Le granite est une roche très solide de couleur claire (gris, blanc, noir), on distingue :

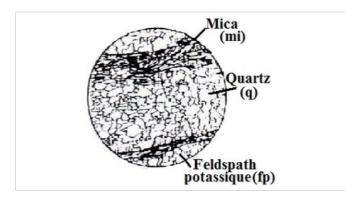
- Un granite d'anatexie : résultant d' un métamorphisme régional **thermodynamique** formé suite à une augmentation de la pression et de la température.
- Un granite intrusif : résultant d'une intrusion magmatique dans des terrains préexistants.

II- Origine et mise en place du granite d'anatexie

2-1/ Mise en évidence du lien entre les roches métamorphiques et le granite

L'anatexie est le processus par lequel les roches métamorphiques, soumises à une augmentation de pression et de température, fondent totalement ou partiellement.

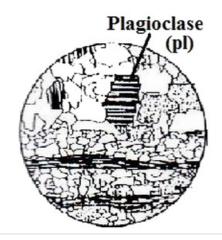
II- Origine et mise en place du granite d'anatexie


2-1/ Mise en évidence du lien entre les roches métamorphiques et le granite

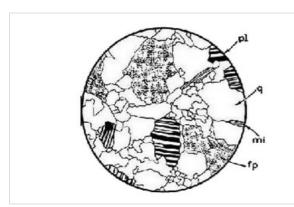
Dans les zones présentant des roches métamorphiques et la formation de granite, on observe la présence d'une roche intermédiaire nommée migmatite.

II- Origine et mise en place du granite d'anatexie

2-1/ Mise en évidence du lien entre les roches métamorphiques et le granite


Gneiss

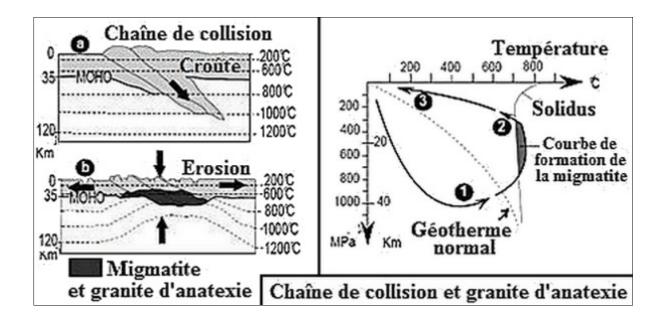
• État à la formation : Solide


• Structure : Foliée

Migmatite

- État à la formation : Solide + Liquide
- Structure : Zone foliée et zone grenue

Granite

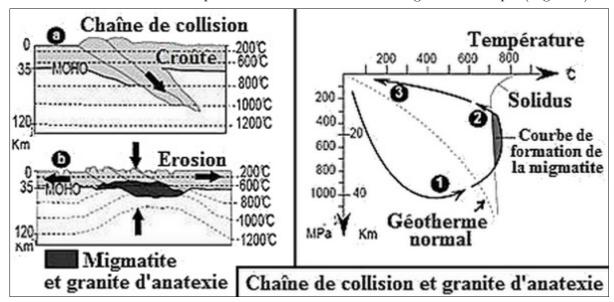


- État à la formation : Liquide
- Structure : Grenue

II- Origine et mise en place du granite d'anatexie

2-2/ Mise en place du granite d'anatexie dans les zones de collision

- La collision entre deux plaques portant des continents amène des fragments de croûte continentale à des profondeurs de l'ordre de 50 à 70 km où elles subissent des conditions de pression et de température croissante (figure a).
- Les roches d'origine se transforment et deviennent des roches métamorphiques, aboutissant à la formation de gneiss (partie 1 de la courbe):

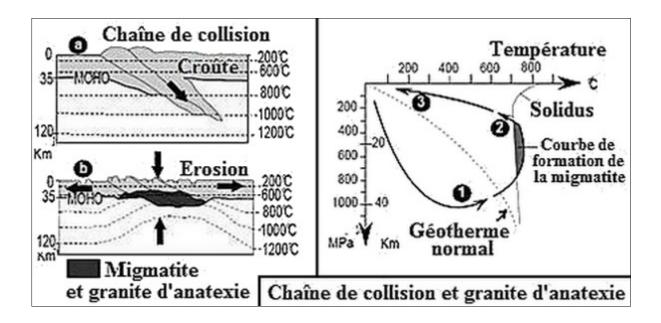


II- Origine et mise en place du granite d'anatexie

2-2/ Mise en place du granite d'anatexie dans les zones de collision

Sous l'effet de l'isostasie par poussée de l'asthénosphère, ces roches vont remonter vers la surface, la pression diminue mais la température reste élevée (partie 2 de la courbe).

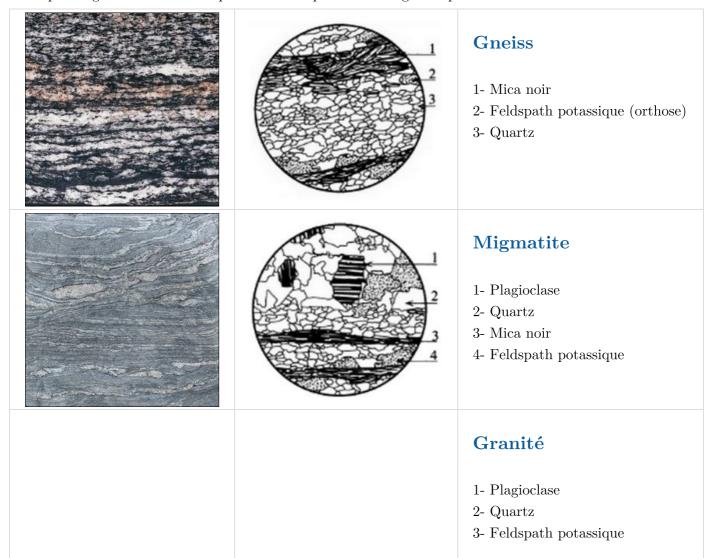
Ces conditions conduisent à la fusion partielle et à la formation du magma anatectique (Figure b):

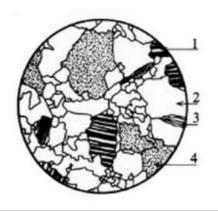


II- Origine et mise en place du granite d'anatexie

2-2/ Mise en place du granite d'anatexie dans les zones de collision

Le magma refroidit progressivement sur place, une partie du magma reste liée au gneiss pour former la migmatite, et une autre partie forme du granite.


Après l'érosion, ces roche affleurent en surface (partie 3 de la courbe) :


III- Types de roches

Entre le granite et le gneiss, on trouve une roche avec une structure double (foliée et grenue) : il s'agit de la migmatite.

L'analyse de la composition chimique des migmatites confirme un passage progressif de la composition chimique du gneiss vers une composition chimique de nature granitique.

IV- Le granite

Comparaison

	Granité d'anatexie	Granité intrusif
Surface	Surface large	Surface limitée
Roches avoisinantes	Migmatite	Auréole de métamorphisme
Type de métamorphisme	Métamorphisme régional ou métamorphisme thermodynamique	Métamorphisme de contact ou métamorphisme thermique
Origine du granite	Magma issue de l'anatexie et qui se refroidit sur place	Magma issue de l'anatexie, qui montent à travers les roches encaissantes donnant un granité intrusif