Cours FONCTIONS PRIMITIVES

PROF : ATMANI NAJIB 2BAC BIOF

FONCTIONS PRIMITIVES

I) FONCTION PRIMITIVE D'UNE FONCTION

1) Activités : Activité1

1) Déterminer une fonction F qui admet pour fonction dérivée la fonction : $f(x) = x^2 + 2x + 3$

2) existe-t-il une autre fonction G tel que :

$$(\forall x \in \mathbb{R}); G'(x) = f(x)$$
?

3) combien Ya t'ils de onction H tel que :

$$(\forall x \in \mathbb{R}); H'(x) = f(x)$$
?

et donner une expression de toutes les fonctions primitives de h

Remarques: 1) la fonction F tel que:

$$F(x) = \frac{1}{3}x^3 + x^2 + 3x$$
 Est dérivable sur \mathbb{R} et

Et on a
$$(\forall x \in \mathbb{R}); F'(x) = f(x)$$

On dira que : F est une primitive de f

2) Soit G une fonction définie sur

$$G(x) = \frac{1}{3}x^3 + x^2 + 3x + 2$$
 on a aussi : G est dérivable

sur
$$\mathbb{R}$$
 et $(\forall x \in \mathbb{R})$; $G'(x) = f(x)$

G est aussi une primitive de f

3)toute fonction H de la forme :

$$H(x) = \frac{1}{3}x^3 + x^2 + 3x + k$$
 avec $k \in \mathbb{R}$ aussi une

primitive de f

Activité2: Soient F une fonction primitive de la fonction f sur l'intervalle I c'est-à-dire $(\forall x \in I)(F'(x) = f(x))$

et G une fonction primitive de la fonction g sur l'intervalle I, α et β deux réels.

1- Montrer que $(\alpha F + \beta G)$ est une fonction primitive de la fonction $(\alpha f + \beta g)$ sur I.

2- Soient F_1 et F_2 deux fonctions primitives de la fonction f sur l'intervalle I; Montrer que : $(\forall x \in I)(F_2(x) = F_1(x) + \lambda)$

où λ est un réel quelconque.

3- Démontrer que si f admet une fonction

primitive sur I et $x_0 \in I$; alors il existe une unique

fonction F_0 fonction Primitive de f telle que

$$F_0(x_0) = y_0$$
 où y_0 un réel quelconque.

2) Définition et propriétés

Définition : Soit f une fonction définir sur un intervalle I; On dit que la fonction F est une fonction primitive de la fonction f sur l'intervalle I

si :1)F est dérivable sur I

$$2) \ (\forall x \in I)(F'(x) = f(x))$$

Théorème :(admis)

Si f est continue sur I alors f admet une fonction primitive sur I

Remarque : La continuité dans le théorème précédent est une condition suffisante qui n'est pas nécessaire.

Propriété : Si f admet une fonction primitive F sur I alors toutes les fonctions primitives de f sur I s'écrivent de la : forme : $F + \lambda$ où λ est un réel.

Propriété: Si F_1 et F_2 sont deux fonction primitive d'une fonction f sur I alors:

$$(\forall x \in I)(F_2(x) = F_1(x) + \lambda) \text{ où } \lambda \in \mathbb{R}$$

Exemple: Soit la fonction f définie par :

$$f(x) = 2x + 1 \text{ si } x \le 1$$

$$f(x) = 2x - 1 \operatorname{si} x > 1$$

Montrer que la fonction f n'admet pas de primitive Sur $\mathbb R$

Solution: On remarque que f n'est pas continue sur \mathbb{R} ; (elle n'est pas continue en 1)

en effet:
$$f(1) = 3$$
 et $\lim_{x \to 1^+} f(x) = 1 \neq f(1)$

 $F_1(x) = x^2 + x + k_1$ est une fonction primitive de

la fonction f sur] – ∞ , 1].

 $F_2(x) = x^2 - x + k_2$ est une fonction primitive de

la fonction f sur]1, + ∞ [.

Si f admet une primitive F sur $\mathbb R$ alors ils existent

 k_1 et k_2 tels que :

Prof/ATMANI NAJIB <u>1</u>

$$\begin{cases} F_1(x) = x^2 + x + k_1; si...x \le 1 \\ F_2(x) = x^2 - x + k_2; si...x \ge 1 \end{cases}$$

et que F soit dérivable sur \mathbb{R} et que :

$$(\forall x \in \mathbb{R}); F'(x) = f(x)$$

On a F est dérivable sur] – ∞ , 1[

et $(\forall x \in] - \infty, 1[)(F'(x) = f(x))$

et F est dérivable sur]1, +∞[

et $(\forall x \in]1, +\infty[)(F'(x) = f(x))$

Le problème il faut déterminer (s'ils existent)

 k_1 et k_2 dans \mathbb{R} pour que F soit dérivable en 1 et que :F'(1) = f(1) = 3.

On a
$$F(1) = 2 + k_1$$

D'autre part pour que f soit dérivable en 1, il faut qu'elle soit continue en 1, ce qui implique

$$\lim_{x \to 1^{+}} F(x) = \lim_{x \to 1^{-}} F(x) = F(1)$$

On en déduit que $2 + k_1 = k_2$ d'autre part :

$$\lim_{x \to 1^{+}} \frac{F(x) - F(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{2} - x + k_{2} - 2 - k_{1}}{x - 1}$$

$$= \lim_{x \to 1^+} \frac{x^2 - x - 2 + k_2 - k_1}{x - 1} = \lim_{x \to 1^+} \frac{x^2 - x - 2 + 2 + k_1 - k_1}{x - 1}$$

Car: $2 + k_1 = k_2$

$$= \lim_{x \to 1^+} \frac{x^2 - x}{x - 1} = \lim_{x \to 1^+} x = 1 = F'_d(1)$$

$$\lim_{x \to 1^{-}} \frac{F(x) - F(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x^{2} + x + k_{1} - 2 - k_{1}}{x - 1}$$

$$= \lim_{x \to 1^{-}} \frac{x^{2} - x - 2}{x - 1} = \lim_{x \to 1^{-}} \frac{(x - 1)(x + 2)}{x - 1} = \lim_{x \to 1^{-}} x + 2 = 3 = F'_{g}(1)$$

Donc pour tous réels k_1 et k_2 ; $F_d'(1) \neq F_\varrho'(1)$

D'où F n'existe pas et par suite f n'admet pas de primitive sur $\mathbb R$

Propriété: Si f admet une fonction primitive sur I et $x_0 \in I$; alors il existe une unique fonction F_0

fonction Primitive de f telle que $F_0(x_0) = y_0$ où y_0 un réel quelconque.

Exemple: Soit la fonction f définie sur $]0; +\infty[$

par:
$$f(x) = 2x^2 + x + 1 + \frac{1}{x^2}$$

1)Déterminer les fonctions primitives de la fonction f sur $]0;+\infty[$

2)Déterminer la fonction primitive de la fonction f sur $]0;+\infty[$ tel que : F(1)=3

Solution :1)
$$f(x) = 2x^2 + x + 1 + \frac{1}{x^2}$$

Donc:
$$F(x) = 2 \times \frac{1}{3} x^{2+1} + \frac{1}{2} x^{1+1} + 1x - \frac{1}{x^2} + k$$

Donc:
$$F(x) = \frac{2}{3}x^3 + \frac{1}{2}x^2 + x - \frac{1}{x} + k$$
 avec $k \in \mathbb{R}$

2)
$$F(1) = 3 \Leftrightarrow \frac{2}{3} \times 1^3 + \frac{1}{2} \times 1^2 + 1 - \frac{1}{1} + k = 3$$

$$F(1) = 3 \Leftrightarrow \frac{2}{3} + \frac{1}{2} + 1 - 1 + k = 3 \Leftrightarrow \frac{7}{6} + k = 3 \Leftrightarrow k = \frac{11}{6}$$

Donc : la fonction primitive de la fonction f sur

$$]0;+\infty[$$
 tel que : $F(1)=3$ est :

$$F(x) = \frac{2}{3}x^3 + \frac{1}{2}x^2 + x - \frac{1}{x} + \frac{11}{6}$$

Propriété : Si F est une fonction primitive de la fonction f sur l'intervalle I et G une fonction primitive de la fonction g sur l'intervalle I et α un réel alors :

- 1) (F + G) est une fonction primitive de la fonction (f + g) sur I
- 2) (αF) est une fonction primitive de la fonction (αf) sur I

3) Tableau des fonctions primitives usuelles.

La fonction	Sa fonction primitive
$\alpha \ (\alpha \in \mathbb{R})$	$\alpha x + c$
$x^n \ (n \in \mathbb{N})$	$\frac{1}{n+1}x^{n+1}+c$
\sqrt{x}	$\frac{2}{3}\sqrt{x^3}+c$
$\sqrt[n]{x}$	$\frac{n}{n+1} \sqrt[n]{x^{n+1}}$
$x^r \ (r \in \mathbb{Q}/\{-1\})$	$\frac{1}{r+1}x^{r+1} + c$
sin(ax + b)	$\frac{-1}{a}\cos(ax+b)+c$
cos(ax+b)	$\frac{1}{a}\sin(ax+b)+c$

4) Opérations sur les fonctions primitives.

Les seules opérations sur les fonctions primitives sont : la somme et le produit par un réel. Mais grâce au tableau des opérations sur les fonctions dérivées on peut en déduire :

La fonction	Sa fonction primitive
u' + v'	$u + v + C^{te}$
αu'	$\alpha u + C^{te}$
$u'u^n (n \in \mathbb{N})$	$\frac{1}{n+1}u^{n+1} + C^{te}$
$\frac{u'}{u^2}$	$\frac{-1}{u} + C^{te}$
$\frac{u'}{2\sqrt{u}}$	$\sqrt{u} + C^{te}$
$u'\sqrt[n]{u} \ (n \in \mathbb{N}^*)$	$\frac{n}{n+1}\sqrt[n]{u^{n+1}} + C^{te}$
$u'u^r \ (r \in \mathbb{Q}/\{-1\})$	$\frac{1}{r+1}u^{r+1} + C^{te}$
$u' \times v'ou$	$vou + C^{te}$

La ligne en couleur gaune est une généralisation des 4 lignes précédentes.

5) Application:

Exercice1 (situation directe): Déterminer une fonction primitive des fonctions suivantes :

1)
$$f(x) = 5x^4 + 3x + 1$$
 2) $f(x) = \frac{1}{\sqrt{x}} + \cos x + \sin x - 1$

3)
$$f(x) = \sin x + x \cos x$$
 4) $f(x) = (2x-1)^3$

5)
$$f(x) = \frac{x}{(x^2 - 1)^2}$$
 6) $f(x) = 5x\sqrt[3]{3x^2 + 1}$

7)
$$f(x) = \frac{4x+1}{(2x^2+x)^4}$$
 8) $f(x) = 7x\cos(\pi x^2 + 3)$

Solutions: 1) $f(x) = 5x^4 + 3x + 1$

$$F(x) = 5 \times \frac{1}{5}x^5 + 3 \times \frac{1}{2}x^2 + 1x + k \text{ avec } k \in \mathbb{R}$$

2)
$$f(x) = \frac{1}{\sqrt{x}} + \cos x + \sin x - 1$$

$$F(x) = 2\sqrt{x} + \sin x - \cos x - x + k$$
 avec $k \in \mathbb{R}$

3)
$$f(x) = \sin x + x \cos x = x' \sin x + x (\sin x)'$$

Donc: $F(x) = x \times \sin x + k$ avec $k \in \mathbb{R}$

4)
$$f(x) = (2x-1)^3 = \frac{1}{2}(2x-1)'(2x-1)^3$$

$$F(x) = \frac{1}{2} \times \frac{1}{3+1} (2x-1)^{3+1} + k \text{ avec } k \in \mathbb{R}$$

$$F(x) = \frac{1}{8}(2x-1)^4 + k \text{ avec } k \in \mathbb{R}$$

$$\int f(x) = -\frac{x}{(x^2 - 1)^2}$$

on doit remarquer que :
$$f(x) = -\frac{(x^2-1)'}{(x^2-1)^2}$$

et par suite :
$$F(x) = \frac{1}{x^2 - 1} + k$$
 avec $k \in \mathbb{R}$

6)
$$f(x) = 5x\sqrt[3]{3x^2 + 1}$$
 On doit remarquer que :

la fonction
$$u(x) = 3x^2 + 1$$
 donne $u'(x) = 6x$ et par

suite :
$$f(x) = \frac{5}{6}u'(x)\sqrt[3]{u(x)}$$
 on utilisant le tableau

(c'est de la forme :
$$u'\sqrt[n]{u}$$
 $(n = 3)$)

Donc les fonctions primitives de f s'écrivent sous

la forme :
$$F(x) = \frac{5}{6} \frac{3}{4} \sqrt[3]{u^4(x)} + k$$

$$F(x) = \frac{5}{8} \sqrt[3]{(3x^2 + 1)^4} + k$$
 avec $k \in \mathbb{R}$

7) Déterminons une fonction primitive de :

$$f(x) = \frac{4x+1}{(2x^2+x)^4}$$
 On doit remarquer que:

la fonction $u(x) = 2x^2 + x$ donne u'(x) = 4x + 1

et par suite :
$$f(x) = \frac{u'(x)}{u^4(x)} = u'(x)u^{-4}(x)$$

En utilisant le tableau on a :

(c'est de la forme :
$$u'u^n$$
 ($n = -4$))

Donc les fonctions primitives de f s'écrivent sous

la forme :
$$F(x) = \frac{1}{-4+1}u^{-4+1}(x) + k$$

$$F(x) = -\frac{1}{3}(2x^2 + x)^{-3} + k = -\frac{1}{3}\frac{1}{(2x^2 + x)^3} + k$$

8) $f(x) = 7x\cos(\pi x^2 + 3)$ On doit remarquer que:

la fonction
$$u(x) = \pi x^2 + 3$$
 donne $u'(x) = 2\pi x$

et par suite : $f(x) = \frac{7}{2\pi}u'(x)\cos(u(x))$

(c'est de la forme : $u' \times (v' \circ u)$)

Donc les fonctions primitives de f s'écrivent sous

la forme : $F(x) = \frac{7}{2\pi} \sin(\pi x^2 + 3) + k$ avec $k \in \mathbb{R}$

Exercice2 : Déterminer une fonction primitive de

fonction suivante : $f(x) = \frac{6}{4x^2 + 4x + 1}$

Solutions: A remarquer que

$$f(x) = \frac{6}{(2x+1)^2} = (-3)\left(-\frac{(2x+1)'}{(2x+1)^2}\right)$$
 (C'est de la forme: $-\frac{u'}{u^2}$)

Donc les fonctions primitives de la fonction f sont

les fonctions : $F(x) = \frac{-3}{2x+1} + k$ avec $k \in \mathbb{R}$

<u>Remarque</u>: On peut utiliser cette méthode pour toutes les fonctions de la formes :

$$f(x) = \frac{\alpha}{ax^2 + bx + c}$$
 où le discriminant Δ est nul

Exercice3: Déterminer les fonctions primitives des fonctions :

1)
$$f(x) = \frac{\sin x}{\sqrt[3]{2 + \cos x}}$$

2)
$$f(x) = 2x \sin x + x^2 \cos x$$
 3) $f(x) = (4x + 5)^2$

4)
$$f(x) = 2\sqrt{2x+1}$$
 5) $f(x) = \frac{x}{\sqrt{x^2+1}}$

6)
$$f(x) = x\sqrt{x^2 + 1}$$
 7) $f(x) = \tan^2 x$

8)
$$f(x) = \cos^4 x$$
 (utiliser : $\cos^2 x = (1 + \cos 2x)/2$))

9)
$$f(x) = \sin^3 x$$
 (Remarquer que : $\sin^3 x = \sin x \sin^2 x$)

Solutions : 1) il faut faire des transformations : a remarquer que :

1)
$$f(x) = \frac{\sin x}{\sqrt[3]{2 + \cos x}} = -(2 + \cos x)'(2 + \cos x)^{-\frac{1}{3}}$$

(c'est de la forme : $u'u^n$)

Donc les fonctions primitives de f s'écrivent sous la forme :

$$F(x) = -\frac{1}{-\frac{1}{3}+1} (2 + \cos x)^{-\frac{1}{3}+1} + k = -\frac{3}{2} (2 + \cos x)^{\frac{2}{3}} + k$$

$$F(x) = -\frac{3}{2}\sqrt[3]{(2+\cos x)^2} + k \quad \text{avec } k \in \mathbb{R}$$

2)
$$f(x) = 2x \sin x + x^2 \cos x = (x^2)' \sin x + x^2 (\sin x)'$$

Donc: $F(x) = x^2 \times \sin x + k$ avec $k \in \mathbb{R}$

3)
$$f(x) = (4x+5)^2 = \frac{1}{4}(4x+5)'(4x+5)^2$$

$$F(x) = \frac{1}{4} \times \frac{1}{2+1} (4x+5)^{2+1} + k$$

$$F(x) = \frac{1}{12}(4x+5)^3 + k \quad \text{avec } k \in \mathbb{R}$$

4)
$$f(x) = 2\sqrt{2x+1} = (2x+1)'(2x+1)^{\frac{1}{2}}$$

Donc:
$$F(x) = \frac{1}{\frac{1}{2} + 1} (2x + 1)^{\frac{1}{2} + 1} = \frac{2}{3} (2x + 1)^{\frac{3}{2}}$$

$$F(x) = \frac{2}{3}(2x+1)^{\frac{3}{2}} = \frac{2}{3}(\sqrt{2x+1})^3 + k$$

5)
$$f(x) = \frac{x}{\sqrt{x^2 + 1}} = \frac{(x^2 + 1)'}{2\sqrt{x^2 + 1}}$$

$$F(x) = \sqrt{x^2 + 1} + k$$
 avec $k \in \mathbb{R}$

6)
$$f(x) = x\sqrt{x^2 + 1} = \frac{1}{2}(x^2 + 1)'(x^2 + 1)^{\frac{1}{2}}$$

$$F(x) = \frac{1}{2} \frac{1}{\frac{1}{2} + 1} (x^2 + 1)^{\frac{1}{2} + 1} + k = \frac{1}{3} (x^2 + 1)^{\frac{3}{2}} + k$$

$$F(x) = \frac{1}{3} \left(\sqrt{x^2 + 1} \right)^3 + k \text{ avec } k \in \mathbb{R}$$

7)
$$f(x) = \tan^2 x = (1 + \tan^2 x) - 1$$

$$F(x) = \tan x - x + k$$
 avec $k \in \mathbb{R}$

8)
$$f(x) = \cos^4 x = (\cos^2 x)^2 = (\frac{1 + \cos 2x}{2})^2$$
)

$$f(x) = \frac{1}{4} \left(1 + 2\cos 2x + \cos^2 2x \right) = \frac{1}{4} \left(1 + 2\cos 2x + \frac{1 + \cos 4x}{2} \right)$$

$$f(x) = \frac{1}{8}(3 + 4\cos 2x + \cos 4x) = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$

$$F(x) = \frac{3}{8}x + \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + k$$
 avec $k \in \mathbb{R}$

9)
$$f(x) = \sin^3 x = \sin x \times \sin^2 x = \sin x \times (1 - \cos^2 x)$$

$$f(x) = \sin x - \sin x \times \cos^2 x = \sin x + (\cos x)' \times \cos^2 x$$

$$F(x) = -\cos x + \frac{1}{3}\cos^3 x + k \quad \text{avec } k \in \mathbb{R}$$

Exercice4: Soit la fonction f définie sur $[0; +\infty[$

par:
$$f(x) = \frac{x^2 + 2x}{(x+1)^2}$$

1)Déterminer les réels a et b tels que :

$$f(x) = a + \frac{b}{(x+1)^2}$$
 $\forall x \in [0; +\infty[$

2)Déterminer la fonction primitive F de la fonction

$$f$$
 sur $[0; +\infty[$ tel que : $F(1) = \frac{5}{2}$

Solution:1)

$$f(x) = a + \frac{b}{(x+1)^2} = \frac{a(x+1)^2 + b}{(x+1)^2} = \frac{ax^2 + 2ax + a + b}{(x+1)^2}$$

Donc:
$$\begin{cases} a=1 \\ 2a=2 \Leftrightarrow \begin{cases} a=1 \\ a=1 \text{ donc} : f(x)=1-\frac{1}{(x+1)^2} \\ b=-1 \end{cases}$$

2)
$$f(x) = 1 - \frac{(x+1)'}{(x+1)^2}$$
 Donc: $F(x) = x + \frac{1}{x+1} + k$

$$k \in \mathbb{R} \quad \forall x \in [0; +\infty[$$

Exercice5: Soit la fonction f définie sur $[1; +\infty]$

$$par: f(x) = x\sqrt{x-1}$$

1)montrer que :
$$f(x) = \sqrt{(x-1)^3} + \sqrt{x-1}$$
 $\forall x \in [1; +\infty[$

2)Déterminer la fonction primitive F de la fonction

$$f$$
 sur $[1; +\infty[$ tel que : $F(2)=1$

Solution :1) $\forall x \in [1; +\infty[$

$$\sqrt{(x-1)^3} + \sqrt{x-1} = \sqrt{(x-1)^2} \times \sqrt{x-1} + \sqrt{x-1} = |x-1| \times \sqrt{x-1} + \sqrt{x-1}$$

On a: $x \in [1; +\infty[$ donc: $x \ge 1$ donc: $x-1 \ge 0$

donc:

$$\sqrt{(x-1)^3} + \sqrt{x-1} = (x-1) \times \sqrt{x-1} + \sqrt{x-1} = x\sqrt{x-1} - 1\sqrt{x-1} + \sqrt{x-1} = x\sqrt{x-1}$$

2)
$$f(x) = \sqrt{(x-1)^3} + \sqrt{x-1} \ \forall x \in [1; +\infty[$$

$$f(x) = ((x-1)^3)^{\frac{1}{2}} + (x-1)^{\frac{1}{2}} = (x-1)^{\frac{3}{2}} + (x-1)^{\frac{1}{2}}$$

$$f(x) = (x-1)'(x-1)^{\frac{3}{2}} + (x-1)'(x-1)^{\frac{1}{2}}$$

Donc:
$$F(x) = \frac{1}{\frac{3}{2}+1}(x-1)^{\frac{3}{2}+1} + \frac{1}{\frac{1}{2}+1}(x-1)^{\frac{1}{2}+1} + k$$

$$F(x) = \frac{2}{5}(x-1)^{\frac{5}{2}} + \frac{2}{3}(x-1)^{\frac{3}{2}} + k$$

$$F(x) = \frac{2}{5} \left(\sqrt{x-1}\right)^5 + \frac{2}{3} \left(\sqrt{x-1}\right)^3 + k \qquad k \in \mathbb{R}$$

C'est en forgeant que l'on devient forgeron Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

