Exercices d'applications et de réflexions

TD-DENOMBREMENT

Exercice1: Soient les ensembles:

A = {1, 2}, B = {a, b, c} et
$$C = \left\{ E\left(\frac{11}{n}\right); n \in \mathbb{N}^* \right\}$$

Calculer : Card(A) et card(B) et card(C)

Exercice2: Soient A et B et C trois ensembles finis.

1) Calculer card(A-B) et $card(A\Delta B)$ en fonction de

card(A) et card(B) et $card(A \cap B)$

2)Montrer que

$$card(A \cup B \cup C) = card(A) + card(B) + card(C)$$

$$-card(A \cap B) - card(A \cap C) + card(A \cap B \cap C)$$

(Formule de Poincaré (cas particuliers) :n=3)

Exercice3: Dans un lycée de 100 élèves, 53 pratiquent le football et 15 le football et basket-ball et 20 pratiquent seulement basket-ball sans football 1)Quelle est Le nombre d'élèves qui pratiquent le basket-ball?

- 2)Quelle est Le nombre d'élèves qui pratiquent au moins un sport ?
- 3)Quelle est Le nombre d'élèves qui ne pratiquent pas Les deux sports ?

Exercice 4 : Dans une promotion de 36 étudiants, 22maîtrisent le C++, 22 le C# et 18 le Java.

De plus, 10 étudiants maîtrisent à la fois le C++ et le C#, 9 maîtrisent à la fois le C# et le Java, et 11 à la fois le C++ et le Java.

Combien d'étudiants maîtrisent les trois langages de programmation ?

Exercice 5 : Combien de nombres de trois chiffres qu'on peut former avec les chiffres

Suivants: 0;1;2;3;4;..;9?

Exercice 6 : On lance une pièce de monnaie 2 fois de suite. Quelle est le nombre de possibilités ?

Exercice 7 : On lance une pièce de monnaie trois fois de suite. Quelle est le nombre de possibilités ?

Exercice 8 : Une classe de 15 garçons et 12 filles.

Il faut un garçon et une fille pour représenter la classe.

Combien de possibilités de choix ?

Exercice 9 : L'association de 20 membres souhaite élire :

- Le président,
- Le secrétaire, et
- Le trésorier.

Combien Ya-t-il de possibilités d'avoir ces trois responsables. Pas de cumul de fonction.

Exercice 10: Combien de nombres de deux chiffres tels que :Le chiffre des unités est 0 ou1ou 2 et le Le chiffre des dizaines est 5 ou 6 ou 7 ou 8 ?

Exercice 11 : si On lance un dé deux fois de suite. Quelle est le nombre de possibilités ?

Exercice 12 : Combien de menus peut-on composer si on a le choix entre 3 entrées, 5 plats et 4desserts ?

Exercice 13 : Soit l'ensemble $M = \{1; 2; 3; 4; 5; 6; 7; 8; 9\}$

- 1)Combien de nombres de 3 chiffres on peut former avec les éléments de *E* ?
- 2)Combien de nombres de 3 chiffres différents deux a deux on peut former avec les éléments de E?

Exercice 14 : 1) de Combien de façons différentes peut - on ranger 5 boules de couleurs différentes dans 4 cases sachant que chaque case peut contenir tous les boules

Exercice 15: $E=\{A,B,C\}$ soit P(E) l'ensembles de tous les parties de E

Déterminer en extension P(E) et calculer : cardP(E)

Exercice 16:

Combien de numéros de téléphone à 8 chiffres peuton former ?

Exercice 17:

Quel est le nombre de mots comportant 5 lettres distinctes ? (Sans se préoccuper du sens des mots)

Exercice 18 : dans un tournoi il Ya 10 participants Déterminer le nombre de classements des 3 premiers places (on suppose que 2 coureurs ne peuvent pas prendre le même classement

Exercice 19 : Une urne contient 9 boules numérotées de 1 à 9.

1)On tire 3 boules de l'urne Successivement avec remise

Et on construit un nombre de trois chiffres Quel est le nombre de nombres possibles ? 2)On tire 3 boules de l'urne Successivement sans remise

Quel est le nombre de nombres possibles ?

Exercice 20: Quelle est le nombre de mots de 4 lettres (avec un sens ou non) du mot « AID » qu'on peut former ?

Exercice 21 : De combien de façons pouvez-vous ranger 10 livres sur une étagère ?

Exercice 22 : De combien de façons peut-on mélanger un jeu de 36 cartes ?

Exercice 23 : Combien d'anagrammes peut-on former avec les lettres du mot :

« excellence »?

Exercice 24 : soit $\Omega = \{a, b, c, d, e\}$ un ensemble Quelle est le nombre de sous-ensembles à 2 éléments ?

Exercice 25 : Une urne contient 7 boules numérotées de 1 à 7.

On tire 2 boules de l'urne simultanément

- 1. Quel est le nombre de tirages possibles ?
- 2. Quel est le nombre de tirages pour que la somme des numéros des boules tirées soit pair ?
- 3. Quel est le nombre de tirages pour que la somme des numéros des boules tirées soit impair ?

Exercice 26 : UN tournoi sportif compte 8 équipes engagées. Chaque équipe doit rencontrer toutes les autres une seule fois

Combien doit-on organiser de matchs possibles?

Exercice 27 : Le bureau d'une association contient 4 hommes et 5 femmes et on souhaite élire un comité de 2 hommes et 3 femmes

- 1) Combien de comités peut-on élire ?
- 2) on suppose que le président H1 et Madame la secrétaire F1 doivent être présent Combien de comités peut-on élire ?

Exercice 28 : À la fin de l'année scolaire, tous les élèves se serre la main. S'il y a 30 élèves, combien de poignées de mains sont échangées ?

Exercice 29 : Dans une classe de 20 élèves, on compte 12 garçons et 8 filles.

On doit élire 5 délégués

- 1) Quel est le nombre de choix possibles ?
- 2)Quel est le nombre de choix de délégués de même sexe ?
- 3)Quel est le nombre de choix de délégués de sexe différents ?
- 4)Quel est le nombre de choix de délégués qui contient 3 garçons et 2 filles ?
- 5)Quel est le nombre de choix qui contient au plus une fille ?
- 6)On suppose que dans cette classe il existe un élève x et sa sœur y
- a) Quel est le nombre de choix de délégués de 5 élèves qui ne contiennent ni x ni y

b) Quel est le nombre de choix de délégués de 5 élèves qui contiennent x mais pas y

Exercice 30 : Combien de diagonales contient un polygone convexe à *n* côtés (une diagonale relie deux sommets non adjacents) ?

Exercice 31 : Développer $(1 + x)^5$ et $(1 - x)^5$ à l'aide de la formule du binôme.

Exercice 32: Dans une entreprise, il y a 800 employés. 300 sont des hommes, 352 sont membres d'un syndicat, 424 sont mariés, 188 sont des hommes syndiqués, 166 sont des hommes mariés, 208 sont syndiqués et mariés, 144 sont des hommes mariés syndiqués. Combien Ya-t-il de femmes célibataires non syndiquées?

Exercice 33: Une femme a dans sa garde-robe: 4 jupes, 5 chemisiers et 3 vestes. Elle choisit au hasard une jupe, un chemisier et une veste. De combien de façons différentes peut-elle s'habiller?

Exercice 34 : A l'occasion d'une compétition sportive groupant 18 athlètes, on attribue une médaille d'or, une d'argent, une de bronze. Combien y-a-t-il de distributions possibles (avant la compétition, bien sûr...) ?

Exercice 35 : Un questionnaire à choix multiples, autorisant une seule réponse par question, comprend 15 questions. Pour chaque question, on propose 4 réponses possibles. De combien de façons peut-on répondre à ce questionnaire ?

Exercice 36: Six personnes choisissent mentalement un nombre entier compris entre 1 et 6.

- 1) Combien de résultats peut-on obtenir ?
- 2) Combien de résultats ne comportant pas deux fois le même nombre peut-on obtenir ?

Exercice 37 : Soit A l'ensemble des nombres de quatre chiffres, le premier étant non nul.

- 1) Calculer le nombre d'éléments de A.
- 2) Dénombrer les éléments de A :
- a) composés de quatre chiffres distincts
- b) composés d'au moins deux chiffres identiques
- c) composés de quatre chiffres distincts autres que 5 et 7

Exercice 38: Quatre garçons et deux filles s'assoient sur un banc.

- 1) Quel est le nombre de dispositions possibles ?
- 2) Même question si les garçons sont d'un côté et les filles de l'autre.
- 3) Même question si chaque fille est intercalée entre deux garçons.

Prof/ATMANI NAJIB Année Scolaire 2018-2019 Semestre2

4) Même question si les filles veulent rester l'une à côté de l'autre

Exercice 39: On trace dans un plan n≥3 droites en position générale (c'est-à-dire que deux droites ne sont jamais parallèles, et 3 droites ne sont jamais concourantes). Combien de triangles a-t-on ainsi tracé?

Exercice 40: Dans une classe de 32 élèves, on compte 19 garçons et 13 filles. On doit élire deux délégués 1) Quel est le nombre de choix possibles ? 2) Quel est le nombre de choix si l'on impose un garçon et fille 3) Quel est le nombre de choix si l'on impose 2 garçons

Exercice 41 : Au service du personnel, on compte 12 célibataires parmi les 30 employés. On désire faire un sondage : pour cela on choisit un échantillon de quatre personnes dans ce service.

- 1) Quel est le nombre d'échantillons différents possibles ?
- 2) Quel est le nombre d'échantillons ne contenant aucun célibataire ?
- 3) Quel est le nombre d'échantillons contenant au moins un célibataire ?

Exercice 42: Un sac contient 5 jetons verts (numérotés de 1 à 5) et 4 jetons rouges (numérotés de 1 à 4).

- 1) On tire successivement et au hasard 3 jetons du sac, sans remettre le jeton tiré. Calculer les possibilités :
- a) De ne tirer que 3 jetons verts ;
- b) De ne tirer aucun jeton vert
- c) De tirer au plus 2 jetons verts ;
- d) De tirer exactement 1 jeton vert.
- 2) On tire simultanément et au hasard 3 jetons du sac.

Reprendre alors les questions a), b), c) et d).

Exercice 43 : Christian et Claude font partie d'un club de 18 personnes. On doit former un groupe constitué de cinq d'entre elles pour représenter le club à un spectacle.

- 1) Combien de groupes de 5 personnes peut-on constituer ?
- 2) Dans combien de ces groupes peut figurer Christian?
- 3) Christian et Claude ne pouvant se supporter, combien de groupes de 5 personnes peut-on constituer de telle façon que Christian et Claude ne se retrouvent pas ensemble ?

Exercice44:Une course oppose 20 concurrents, dont Ahmed.

Combien Ya-t-il de podiums possibles ?

- 2. Combien Ya-t-il de podiums possibles où Ahmed est premier ?
- 3. Combien Ya-t-il de podiums possibles dont Ahmed fait partie ?
- 4. On souhaite récompenser les 3 premiers en leur offrant un prix identique à chacun. Combien Ya-t-il de distributions de récompenses possibles ?

Exercice 45: Dans une pièce, il y a deux tables. La première dispose de 3 chaises, numérotées de 1 à 3, la seconde dispose de 4 chaises, numérotées de 1 à 4. Sept personnes entrent. Combien Ya-t-il de possibilités de les distribuer autour de ces deux tables ?

Exercice 46 : Un cadenas possède un code à 3 chiffres, chacun des chiffres pouvant être un chiffre de 1 à 9.

- 1)1-1) Combien y-a-t-il de codes possibles?
- 1-2) Combien Ya-t-il de codes se terminant par un chiffre pair ?
- 1-3) Combien y-a-t-il de codes contenant au moins un chiffre 4?
- 1-4) Combien y-a-t-il de codes contenant exactement un chiffre 4?
- 2)Dans cette question on souhaite que le code comporte obligatoirement trois chiffres distincts.
- 2-1) Combien y-a-t-il de codes possibles ?
- 2-2) Combien y-a-t-il de codes se terminant par un chiffre impair ?
- 2-3) Combien y-a-t-il de codes comprenant le chiffre 6?

Exercice 47: Ali et Fatima font partie d'une équipe de 8 joueurs (6 garçons et 2 filles). On décide de fabriquer un comité de 3 joueurs.

- 1)Combien y-a-t-il de comités possibles ? 2)Combien y-a-t-il de comités contenant
- exactement 2 garçons et 11 fille ?
- 3)Combien y-a-t-il de comités contenant au moins deux garçons ?

 4)On veut que Ali et Fatima soient ensemble dans le

comité. Combien y-a-t-il de comités possibles ? 5)On ne veut pas que Ali et Fatima soient ensemble dans le comité. Combien y-a-t-il de comités possibles ?

Exercice 48: On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de physique, et 3 de chimie. De combien de façons peut-on effectuer ce rangement: si les livres doivent être groupés par matières. si seuls les livres de mathématiques doivent être groupés.

Exercice 49 : Dénombrer les anagrammes des mots suivants : MATHS, RIRE, ANANAS.

Prof/ATMANI NAJIB Année Scolaire 2018-2019 Semestre2 <u>3</u>

Exercice 50: Soit *p* points du plan distincts non aligner 3 par 3.

1)Combien de polygones à *n*≤*p* côtés peut-on réaliser à partir de ces points ?

2)On fixe un tel polygone à *n* côtés. Combien de diagonales ce polygone comporte-t-il?

Exercice 51 : Dans une urne se trouvent 9 boules : 4 rouges numérotées 0 ;1 ;1 ;2 et 3 vertes numérotées 1 ;2 ;2 et deux noires numérotées 1 ; 3 On en tire 3 boules

Et on considéré les évènements suivants :

A « obtenir trois boules de trois couleurs différentes. Deux à deux »

B « obtenir trois boules qui portent le même numéro C « la somme des numéros des boules tirées est égale a 4 »

D « obtenir au moins une boule rouge »

Trouver le nombre de possibilités des évènements A ; B ; C ; D dans les cas suivants :

1)Tirage de 3 boules simultanément

2)Tirage de 3 boules Successivement Avec remise

3)Tirage de 3 boules Successivement sans remise

Exercice 52: $k \in \mathbb{N}$ et $n \in \mathbb{N}$ et $0 \le k \le n$

1)Montrer que : $A_{n+1}^k = A_n^k + kA_n^{k-1}$

2) $k \in \mathbb{N}$ et $p \in \mathbb{N}$ et $n \in \mathbb{N}$ et $0 \le k \le p \le n$

Montrer que : $C_n^k C_{n-k}^{p-k} = C_n^k C_n^p$ et déterminer la valeur

de la somme suivante : $S = \sum_{k=0}^p C_n^k C_{n-k}^{p-k}$

3)Déterminer le nombre entier $3 \le n$ tel que :

$$C_n^1 + C_n^2 + C_n^3 = 5n$$

4) Montrer que : $2^n \ge 1 + n$ et $3^n \ge 1 + 2n$ $\forall n \in \mathbb{N}$

5) a)Montrer que : $\sum_{k=0}^{n} \left(-1\right)^{k} C_{n}^{k} = 0 \quad \forall n \in \mathbb{N}$

5) b) calculer : $S_n = \sum_{k=0}^n kC_n^k$ en fonction de n

6) quelle est le coefficient de $x^7y^3z^2$ dans l'identité remarquable $(x+2y+3z)^{12}$

Exercice 53 : Soit E l'ensemble à 12 éléments {a,b,c,d,e,f,g,h,i,j,k,l}.

1)Dénombrer les parties de E à 5 éléments qui contiennent

a. A et b;

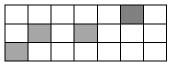
b. a mais pas b

c. b mais pas a

d. ni a , ni b

2)En déduire la relation : $C_{12}^5 = C_{10}^3 + 2C_{10}^4 + C_{10}^5$

3)Généraliser le résultat obtenu en prouvant, par un dénombrement, que pour 2≤p≤n, on a


$$C_n^p = C_{n-2}^{p-1} + 2C_{n-2}^{p-1} + C_{n-2}^p$$

4)Retrouver le résultat précédent en appliquant la formule du triangle de Pascal.

Exercice 54 : Soit $1 \le p \le n$. On considère n boules et deux boîtes Aet B . Un échantillon est constitué d'une boule dans la boîte A et de p-1 boules dans la boîte B . En dénombrant de deux façons différentes ces échantillons, établir la formule $nC_{n-1}^{p-1} = pC_n^p$

Retrouver cette formule par le calcul.

Exercice 55: On a une grille de : $7 \times 3 = 21$ (Voire le schéma)

1)On colore par le noire 4 carreaux de la grille

a. Quel est le nombre de cas possibles ?

 b. Quel est le nombre de cas possibles tel que tous les carreaux noirs soient sur la même horizontal?

c. Quel est le nombre de cas possibles tel que 3 carreaux noirs soient sur la même vertical ?

2)maintenant on colore 4 carreaux de la grille par les couleurs : noire, rouge et vert et jaune

a. Quel est le nombre de façons possibles ?

b. Quel est le nombre de façons possibles pour que les carreaux colorés soient sur la même horizontal

Exercice 56: $n \in \mathbb{N}$ et $p \in \mathbb{N}$ to $0 \le p \le n$

1)Montrer que : $C_n^p = C_{n-1}^p + C_{n-1}^{p-1}$

2)Résoudre dans ${\mathbb R}$ l'équation suivante :

$$x^{2} - C_{n}^{p}x + C_{n-1}^{p-1}C_{n-1}^{p} = 0$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

