Résumé de Cours DENOMBREMENT

2ème BAC Sciences ex (pc-svt...)

DENOMBREMENT

PROF: ATMANI NAJIB

Dénombrer, c'est compter des objets.

I.Ensemble fini: introduction

1)Un ensemble qu'on peut dénombrer ses éléments est dit un ensemble fini et Le nombre d'éléments distincts d'un ensemble E est appelé le cardinal de E, on le note : Card(E)=n

Dans le cas contraire, on dit qu'il est infini.

2) L'ensemble vide, noté \varnothing est un ensemble de cardinal 0 : $card \varnothing = 0$

Propositions : Soient E et F deux ensembles finis

1) $card(E \cup F) = card(E) + card(F) - card(E \cap F)$ 2) Si E et F sont disjoints $(E \cap F = \emptyset)$ alors:

 $card(E \cup F) = card(E) + card(F)$

Si $\left(X_i\right)_{1\leq i\leq n}$ est une famille d'ensembles disjoints deux a

deux ($(X_i \cap X_j = \emptyset)$ si $(i \neq j)$) alors:

$$card\left(\bigcup_{i=1}^{i=n} X_i\right) = \sum_{i=1}^{i=n} card\left(X_i\right)$$

3)Si $E \subseteq F$ alors : $card(E) \le card(F)$ et

 $card(F-E) = card(C_F^E) = card(F) - card(E)$

II. Théorème fondamental du dénombrement

Si un événement C_1 peut se produire de n_1 façons différentes

et un événement C_2 peut se produire de n_2 façons différentes et et un événement C_p peut se produire

de n_p façons différentes

et Tous ces événements étant indépendants,

Alors :Le total n des possibilités de l'événement combiné C_1 , C_2 ; ... C_p est le produit des possibilités

de chaque événement. Cad : $n_1 \times n_2 \times n_3 ... \times n_p$

Propositions : Soient A et B deux ensembles finis et non vides : $card(A \times B) = cardA \times cardB$

III.le nombre d'applications d'un ensemble dans un autre

Soient M et N deux ensembles finis et non vides. L'ensemble des applications de N dans M est :

 $(cardM)^{cardN} = m^n$ avec : cardM = m et cardN = n

IV.L'ensembles de tous les parties d'un ensemble fini

Soit E un ensemble fini et non vide et cardE) = n $n \in \mathbb{N}$ et soit P(E) l'ensembles des parties de E on a :

 $cardP(E) = 2^n$

V.Arrangements

1)**Définition :** Soit E un ensemble fini de cardinal n Un arrangement de p éléments de E est une suite ordonnée de p éléments de E C'est-à-dire : un élément de la forme :

$$(x_1; x_2; ...; x_p) \in E \times E \times ... \times E = E^p$$

et dans la notion d'arrangement l'ordre des éléments importe et on distinguera :

- Les arrangements avec répétitions
- Les arrangements sans répétitions

2)Arrangements avec répétitions

2-1 Définition : Soit E un ensemble fini de Cardinal n. Un arrangement avec répétitions de p éléments de E est un arrangement de p éléments de E non nécessairement distincts. On utilise également le terme de p-liste d'éléments de E .

2-2 Nombre d'arrangements avec répétitions

Soit E un ensemble fini de cardinal n.

Le nombre d'arrangements avec répétitions de p éléments de E est égal à n^p .

3)Arrangements sans répétitions

3-1 Définition : Soit E un ensemble fini de cardinal n. Un arrangement sans répétitions de p éléments de E est un arrangement de p éléments de E tous distincts.

3-2 Nombre d'arrangements sans répétitions

Soit E un ensemble fini de cardinal n.

Le nombre d'arrangements sans répétitions de p éléments

de E se note : A_n^p et est égal à :

$$A_n^p = n \times (n-1) \times (n-2) \times \dots \times (n-p+1)$$

VI.Permutations

1)permutations sans répétitions

Soit E un ensemble fini de cardinal n. $n \in \mathbb{N}^*$ Une **permutation** des éléments de E est une liste ordonnée

d'éléments de E sans répétitions et le nombre de permutations d'un ensemble fini E à n éléments est le nombre n! (factorielle n) défini par

$$n! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1$$

2)permutations avec répétitions

Le nombre de permutations que l'on peut constituer si certains des éléments sont

Identiques est évidemment plus petit que si tous les éléments sont distincts.

Lorsque seuls k éléments sont distincts ($k \le n$), chacun

d'eux apparaissant n_1 , n_2 , ..., n_k fois, avec $n_1 + n_2 + ... + n_k = n$ et $n_i \ge 1$, on a:

$$P_n = \frac{n!}{n_1 \bowtie n_2 \bowtie ... \bowtie n_k!} \ (P_n \text{ permutations avec répétitions})$$

Prof/ATMANI NAJIB <u>1</u>

VII. Combinaisons

1 Définition : Soit E un ensemble non vide de n éléments $(n \neq 0)$:

Et un entier $p: 0 \le p \le n$

On appelle combinaison de p éléments d'un ensemble fini E de n éléments, tout sous-ensemble A de p éléments de E.

Remarque : « combinaison » est donc synonyme de sousensemble et aussi de partie.

(Ce sont les façons de choisir p éléments parmi n éléments **2 Propriété :** Quels que soient les entiers naturels n et p tes que $0 \le p \le n$ on a :

Le nombre de combinaisons de p éléments parmi n éléments est le nombre que l'on note par : C_n^p et on a :

$$C_n^p = \frac{A_n^p}{p!}$$
 et on a aussi : $C_n^p = \frac{n!}{p!(n-p)!}$

$$C_n^0 = 1$$
 ; $C_n^1 = n$; $C_n^n = 1$

• Le nombre de combinaisons de 0 éléments parmi n éléments est :

 $C_n^0 = 1$ (L'ensemble vide)

• Le nombre de combinaisons de 1 éléments parmi n éléments est : $C_n^1 = n$ (les singletons)

• Le nombre de combinaisons de n éléments parmi n éléments de E est : $C_n^n = 1$ (L'ensemble E)

3) Propriétés : Quels que soient les entiers naturels n et p tes que $0 \le p \le n$ on a :

1)
$$C_n^p = C_n^{n-p}$$
 2) $C_n^p = C_{n-1}^p + C_{n-1}^{p-1}$

Applications: Triangle de Pascal

La relation de Pascal permet de construire facilement un triangle qu'on nomme triangle de Pascal :

n	0	1	2	3	4	5	
O	7						
1	1	1	Ce tableau et appelé le Triangle de Pascal.				
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	

VIII.Formule du binôme de Newton

Proposition: $a \in \mathbb{R}$ et $b \in \mathbb{R}$

$$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a^1 b^{n-1} + C_n^n b^n$$

Synthèse:

Récapitulons les différentes questions que l'on doit se poser confronté à un problème de dénombrement. Cela nous permettra de savoir choisir le concept à utiliser en fonction de la situation.

1)L'ordre des éléments est-il important?

• Si oui il s'agit d'arrangements ou de permutations.

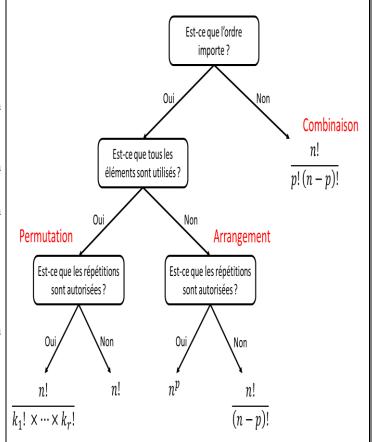
• Si non il s'agit de combinaisons.

2)Si l'ordre importe, est-ce que tous les éléments sont utilisés ?

- Si non il s'agit d'arrangements.
- Si oui il s'agit de permutations.

3)Les répétitions sont-elles ou non autorisées ?

Nous pouvons représenter par un arbre de décision ces



Prof/ATMANI NAJIB <u>2</u>