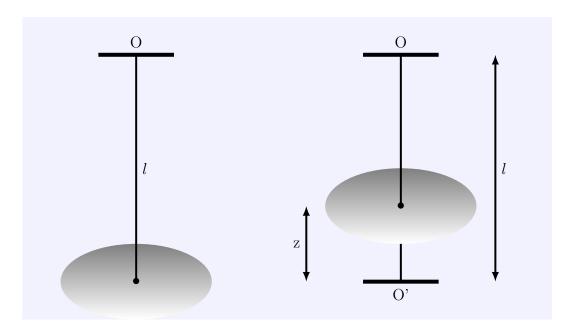
Problèmes de synthèse

Exercice 1:

Un pendule de torsion est constitué par un fil métallique vertical de longueur l=0,50m, fixé à l'une des extrémités un disque horizontal , homogène de moment d'inertie par rapport à son axe Δ , $J_{\Delta}=5\times 10^{-5}kg.m^2$. L'autre extrémité du fil est étant fixé à un point O_1 . Le système (disque+fil) peut tourner autour d'un axe fixe (Δ) matérialisé par le fil métallique et qui passe par le centre d'inertie du disque .



- 1. Déterminer la nature du mouvement du disque dans le plan horizontal
- 2. Calculer la constante de torsion C si la période propre $T_0=0,92s$
- 3. Que devient cette période si la longueur est divisée par deux?
- 4. Les extrémités supérieure et inférieur du fil étant immobiles , on fixe le disque du pendule tel que son centre d'inertie se trouve à une distance z du point O' du fil . On néglige l'épaisseur du disque devant z . Les deux brins de fil ont une torsion nulle . L'axe de rotation du pendule est vertical .
 - (a) Déterminer la nature du mouvement de nouveau pendule et trouver la période T_0' en fonction de T_0 , l et z sachant que la constante de torsion d'un fil est inversement proportionnelle à sa longueur, si le fil est homogène et de section constante.
 - (b) Calculer T_0' . On donne $z = \frac{l}{3}$
 - (c) Montrer que la période T'_0 prend une valeur maximale T'_{max} lorsque z est égale une valeur z_m . Calculer z_m et déduire la valeur de T'_{max} .

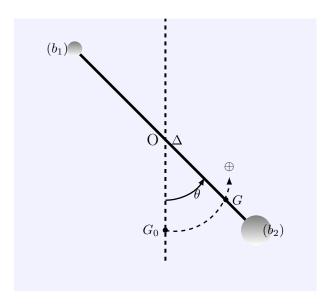
Exercice 2:

Pour réaliser un pendule pesant, on fixe deux boules b_1 et b_2 ponctuelles de masses $m_1 = 50g$ et $m_2 = 4m_1$ aux bouts d'une tige homogène de masse négligeable et de longueur

2l=0,4m qui peut tourner autour d'un axe horizontal fixe (Δ) passant par son milieu O . La position d'équilibre stable du pendule pesant est lorsque le centre de gravité du système se coïncide avec G_0 . On écarte le pendule de sa position d'équilibre stable d'un angle très petit $\theta_m=\frac{\pi}{20}rad$ et on l'abandonne sans vitesse initiale .

On repère à chaque instant la position du pendule par son abscisse angulaire $\theta = (\overrightarrow{OG_0}, \overrightarrow{OG})$ voir figure .

Le moment d'inertie du système par rapport à l'axe (Δ) est $J_{\Delta} = (m_1 + m_2)l^2$.



1. En utilisant la relation barycentrique , montrer que le centre de gravité du pendule pesant est :

$$OG = \frac{3}{5}l$$

2. En appliquant la relation fondamentale de la dynamique au pendule pesant ,montrer que l'équation différentielle du mouvement s'écrit sous la forme suivante :

$$\frac{d^2\theta}{dt^2} + \frac{3g}{5l}\theta = 0$$

Quelle est la nature du mouvement de G?

- 3. La solution de l'équation différentielle est la suivante $\theta(t) = \theta_m cos\left(\frac{2\pi}{T_0}.t + \varphi_0\right)$, Déterminer l'expression de la période propre T_0 des oscillations en fonction de l, g calculer T_0 .
- 4. On considère l'instant où le pendule passe par sa position d'équilibre stable avec une vitesse positive comme origine des date. Écrire l'expression de l'équation horaire $\theta(t)$ en fonction du temps .
- 5. Soit \overrightarrow{R}_T la composante tangentielle et \overrightarrow{R}_N la composante normale de la réaction \overrightarrow{R} appliquée par l'axe (Δ) à la tige .
 - (a) En appliquant la deuxième loi de Newton, déterminer , en fonction de m_1 , m_2 , g , et θ_m les expressions de \overrightarrow{R}_T et \overrightarrow{R}_N , lorsque la tige est en position où $\theta = \theta_m$
 - (b) En déduire l'intensité de la réaction \overrightarrow{R} .

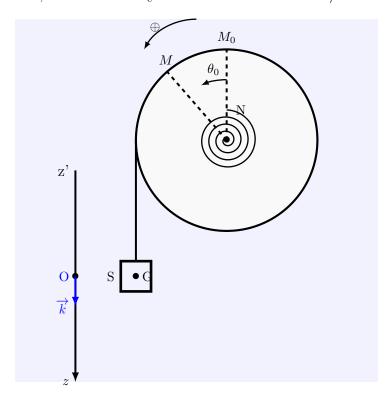
Exercice 3:

Sur un disque homogène de rayon r=10cm soudé au son centre d'inertie à une tige cylindrique de masse négligeable et qui peut tourner autour d'un axe horizontal fixe et confondu avec l'axe du tige . Le moment d'inertie du disque est $J_{\Delta}=2,50kg.m^2$, on entoure un fil dont lextimité libre supporte une masse m=42kg. On fixe sur l'axe du disque l'extrémité d'un ressort spiral de masse négligeable , l'autre extrémité N étant liée à un support fixe .

Lorsque le ressort spirale n'est pas déformé, l'abscisse angulaire est nul $(\theta = 0)$

À l'équilibre, Le centre d'inertie du corps de masse m se coı̈ncide avec l'origine O de l'axe verticale (O, \overrightarrow{k}) et l'angle de rotation du disque est θ_0

Le cylindre s'écarte de sa position d'équilibre d'un angle θ , est soumis de la part du ressort à un couple de torsion, de moment $\mathcal{M}_c = -C.\theta$ avec C = 12N.m/rad



- 1. Écrire une équation donnant θ_0 , angle correspondant à la position d'équilibre du système
- 2. En appliquant la relation fondamentale de la dynamique système ,montrer que l'équation différentielle du mouvement s'écrit sous la forme suivante :

$$\frac{d^2\theta}{dt^2} + \frac{C}{J_{\Delta} + mr^2}\theta = 0$$

3. La solution de l'équation différentielle est la suivante $\theta(t) = \theta_m cos\left(\frac{2\pi}{T_0}.t + \varphi_0\right)$, Déterminer l'expression de la période propre T_0 des petites oscillations. Calculer sa valeur.

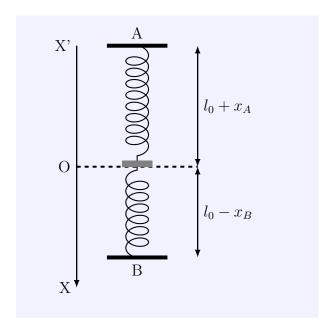
Exercice 4:

Deux ressorts identiques de longueur l_0 , de raideur K, sont tendus entre deux points A

et B distant de L. Un disque D, de masse M et d'épaisseur négligeable , est fixé entre ces ressorts . voir figure .

On donne: L = 45cm; $l_0 = 15cm$; K = 20N/m; $g = 10m/s^2$ et M = 0, 1kg

- 1. Déterminer la position d'équilibre du disque en déterminant x_A et x_B
- 2. Le disque est écarter de sa position d'équilibre verticalement , vers le bas de d=3cm et abandonné sans vitesse initiale .
 - a. Par une étude dynamique , donner l'équation différentielle du mouvement du disque (on choisira l'axe XX' comme sur la figure , son origine coı̈ncidant avec la position d'équilibre)
 - b. En déduire l'équation horaire du mouvement de D
- 3. Retrouver l'équation horaire par une étude énergétique .



Exercice 5 : influence de la température et la longueur sur la période d'un pendule **

Un pendule est constitué par un tige métallique OA , de masse négligeable mobile autour d'un axe horizontal perpendiculaire à la tige passant par O . Sur l'extrémité A , on fixe une masse M supposée ponctuelle . Ce pendule est assimilable à un pendule simple de longueur OA = l, il effectue des oscillations de faible amplitude. Le pendule battant le seconde à $0^{\circ}C$ $(T_0 = 2s)$ en un lieu où $g_0 = 9,8m/s^2$.

- 1. Calculer la longueur $OA = l_0$ à cette température .
- 2. La température s'élève à $20^{\circ}C$. Quelle variation relative $\frac{\Delta T}{T_0}$ du pendule en résulte-til sachant que le cœfficient de dilatation linéaire de la tige qui soutient la masse M est $\lambda = 1,85 \times 10^{-5} S.I$.

On donne la relation des dilatation des solide en fonction de la température en ${}^{\circ}C$ est :

$$l = l_0(1 + \lambda.\theta)$$

avec l_0 la longueur de la tige à la température θ °C et pour $\varepsilon << 1$, nous avons l'approximation suivante : $(1+\varepsilon)^n \approx 1+n.\varepsilon$

- 3. Ce pendule constitue le balancier d'une horloge dont la marche est exacte à $0^{\circ}C$ (bat la seconde). Cette horloge avance -t-elle ou retarde-t-elle lorsque la température s'élève à $20^{\circ}C$? de combien dans un jour?
- 4. À la température $20^{\circ}C$ la longueur de la tige est l, on fixe une petite masse ponctuelle m au milieu de la tige . Calculer la nouvelle période de ce pendule composé en fonction de l,M,m et g .

On rappelle que le moment d'inertie d'une masse ponctuelle m distant de l'axe de rotation de d est $J_{\Delta}=md^2$

Montrer que la présence de m diminue la période propre du pendule.

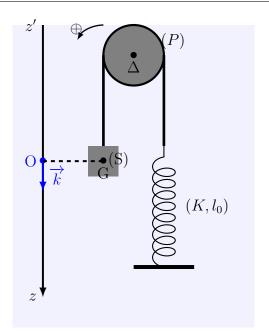
5. Quelle doit être la valeur de m
 pour que le pendule ainsi modifié bat rigoureusement la seconde à 20°
 $\!C$

Exercice 6 : détermination du moment d'inertie d'un cylindre d'une poulie homogène (P)

Le but de cet exercice est de déterminer le moment d'inertie J_{Δ} d'un cylindre d'une poulie homogène de rayon r=0,15m qui peut tourner autour de son axe Δ fixe .

On considère un ressort à spire non jointif de masse négligeable et de raideur K et sa longueur initiale est $l_0 = 0, 2m$.

On relie l'extrémité mobile du ressort à un corps solide (S) de masse m=0,3kg par un fil inextensible et de masse négligeable passant par la gorge de la poule (P) sans glissement .



- 1. À l'équilibre la longueur finale du ressort est l=0,25m, déterminer l'expression du raideur du ressort et calculer sa valeur . 2. On écarte le corps (S) de sa position d'équilibre et on l'abandonne sans vitesse initiale .
- 2.1 En faisant une étude dynamique sur le système mécanique , établir l'équation différentielle du mouvement du centre d'inertie de (S).
- 2.2 Déterminer l'expression du moment d'inertie de la poulie (P) J_{Δ} en fonction de m,r,K et la période propre T des oscillations . 2.3 Calculer J_{Δ} sachant que la période propre T=0,49s.