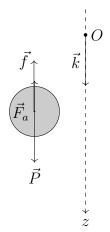
La chute verticale:

Les forces agissantes sur un solide en chute verticale :

Le vecteur \vec{P} :

Dans le champ de pesanteur terrestre, tous les solides sont soumis à une force exercée par la terre, c'est le poids du corps. Le vecteur poids est le produit de la masse m du solide et le vecteur champ de pesanteur terrestre \vec{g} :

$$\vec{P} = m\vec{g}$$



Force de frottement fluide:

On modélise l'ensemble de forces de frottement entre le solide et le fluide par une seule force \vec{f} , c'est la force de frottement fluide.

Il existe plusieurs types de forces de frottement fluide :

. Si le solide est petit et sa vitesse est faible, le vecteur s'écrit :

$$\vec{f} = -h.v.\vec{k}$$

. Si le solide est grand et sa vitesse est grande, le vecteur s'écrit :

$$\vec{f} = -h.v^2.\vec{k}$$

Généralement la force de frottement fluide est de sens opposé à celui du vecteur vitesse et d'intensité :

$$\vec{f} = -h.v^n.\vec{k}$$

h est le coefficient de frottement fluide en kg.s⁻¹, il dépend de la forme et le volume du solide, ainsi la nature du fluide et sa viscosité.

La poussée d'Archimède:

Tout solide immergé dans un fluide est soumis à l'action d'une force exercée par ce fluide.

Cette force est appelée poussée d'Archimède, notée \vec{F}_a .

La poussée d'Archimède est égale à l'opposée du vecteur poids du volume du fluide déplacé :

$$\vec{F}_a = -\vec{P}_f = -m_f \vec{g}$$

Avec $m_f = \rho_f.V,$ la masse du fluide déplacé, ρ_f la masse volumique du fluide et V son volume déplacé.

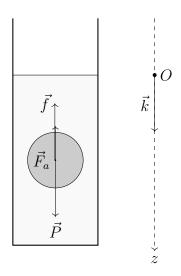
D'où les caractéristiques suivantes :

 $\begin{cases} \text{La direction : Verticale} \\ \text{Le sens : Vers le haut} \\ \text{La norme : } F_a = \rho_f.V.g \end{cases}$

Chute verticale d'un corps dans un fluide par frottement :

L'équation différentielle vérifiée par la vitesse :

On considère une bille de masse m complètement immergée dans un fluide :



Le système étudié : {La bille}

Bilan des forces:

 $\begin{cases} \vec{P} : & \text{Le poids de la bille} \\ \vec{F}_a : & \text{La poussée d'Archimède} \\ \vec{f} : & \text{La force de frottement} \end{cases}$

Dans le référentiel terrestre supposée galiléen on associe le repère (O, z), En appliquent la deuxième loi de Newton :

$$\sum_{\vec{F}} \vec{F} = m\vec{a}$$

$$\vec{P} + \vec{F}_a + \vec{f} = m\vec{a}$$

$$P - F_a - f = ma$$

$$mg - \rho Vg - hv^n = ma$$

$$g\left(1 - \frac{\rho V}{m}\right) - \underbrace{\frac{h}{m}}_{B} v^n = \frac{\mathrm{d}v}{\mathrm{d}t}$$

Donc l'équation différentielle est donnée par :

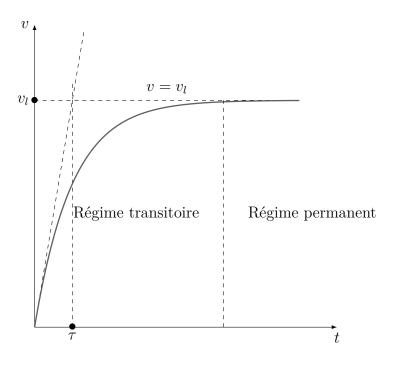
$$A - Bv^n = \frac{\mathrm{d}v}{\mathrm{d}t}$$

Les régimes d'une chute verticale :

Au cours d'une chute verticale on distingue deux régimes, qui sont :

Le régime initial (transitoire): Dans lequel la vitesse croit au cours du temps.

Le régime permanent : Dans lequel la vitesse reste constante au voisinage d'une vitesse appelée vitesse limite v_l .



Régime transitoire :

La vitesse de la bille augmente, la valeur de f augmente et l'accélération diminue.

Régime permanent :

La vitesse de la bille et la valeur de f deviennent constantes et l'accélération est nulle. L'accélération à t=0 est donnée par :

$$a_0 = \frac{\mathrm{d}v}{\mathrm{d}t}\Big|_{t=0} = \frac{v_l}{\tau}$$

Ou bien à partir l'équation différentielle :

$$A - Bv^n = a \xrightarrow{v=0} a = A = g\left(1 - \frac{\rho V}{m}\right)$$

La vitesse limite peut être calculé graphiquement, ou bien à partir l'équation différentielle :

$$A - Bv^{n} = \frac{\mathrm{d}v}{\mathrm{d}t} \xrightarrow{v=v_{l}} A - Bv_{l}^{n} = 0$$
$$v_{l} = \sqrt[n]{\frac{A}{B}}$$

Remarque : La durée du mouvement initial, c'est-à-dire la durée dans du régime transitoire est environ 5τ .

La méthode d'Euler pour la résolution approchée d'une équation différentielle :

Supposons que nous ayons une équation différentielle de la forme :

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = A - Bv^n$$

La méthode d'Euler est une méthode qui nécessite la répétition du même calcul, elle permet de savoir la vitesse à un instant donnée. Elle comporte deux étapes :

La première étape : Si on connait la vitesse initiale v_0 , on détermine la valeur de a_0 à partir la relation suivante : $a_0 = A - Bv_0^n$.

La deuxième étape : À un instant $t_1 = t_0 + \Delta t$, avec Δt est très petite, on a : $\Delta v = v_1 - v_0$ et $a = \frac{\Delta v}{\Delta t}$, en supposant que $v_0 = 0$, on déduit que : $v_1 = a_0 \Delta t = A \Delta t$, d'où : $a_1 = A - Bv_1^n$.

À l'instant $t_2 = t_1 + \Delta t$, on a : $\Delta v = v_2 - v_1 = a_1 \Delta t$ c'est-à-dire $v_2 = a_1 \Delta t + v_1$ et $a_2 = A - Bv_2^n$. En suivant les mêmes étapes on peut calculer jusqu'au v_n et a_n , car la méthode d'Euler est itérative.

Généralisation de la méthode d'Euler:

À un instant t_i , on écrit :

$$a_i = \frac{\mathrm{d}v}{\mathrm{d}t}\Big|_{t=t_i} = A - Bv_i^n$$

À l'instant $t-i+1=t_i+\Delta t$, où Δt est infinitésimal (très petite), on peut adopter l'approximation suivante :

$$\frac{v_{i+1} - v_i}{\Delta t} \approx \frac{\mathrm{d}v}{\mathrm{d}t}\Big|_{t=t_i} = a_i$$

Ceci conduit à la relation suivante :

$$v_{i+1} = v_i + a_i \Delta t$$

La combinaison de ces relations nous permet de connaître v et a à chaque pas Δt , en suivant un enchainement de calcul :

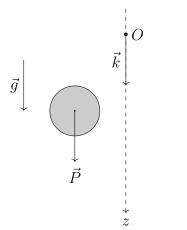
$$t_{0} = 0$$
 $v_{0} = 0$ $a_{0} = A - Bv_{0}$
 $t_{1} = t_{0} + \Delta t$ $v_{1} = v_{0} + a_{0}\Delta t$ $a_{1} = A - Bv_{1}^{n}$
 $t_{2} = t_{1} + \Delta t$ $v_{2} = v_{1} + a_{1}\Delta t$ $a_{2} = A - Bv_{2}^{n}$
..... $v_{i} = t_{i-1} + \Delta t$ $v_{i} = v_{i-1} + a_{i-1}\Delta t$ $a_{i} = A - Bv_{i}^{n}$

La chute libre verticale:

La chute libre:

Un solide est en chute libre lorsqu'il est soumis qu'à l'action de son poids, cette chute n'est réalisable que si le solide se trouve dans le vide.

Les équations horaires du mouvement :



On applique la deuxième loi de Newton :

$$\sum \vec{F} = m\vec{a}$$

$$\vec{P} = m\vec{a}$$

$$m\vec{g} = m\vec{a}$$

$$\vec{g} = \vec{a}$$

Par projection sur l'axe (Oz) on trouve :

$$a = g \iff \frac{\mathrm{d}v}{\mathrm{d}t} = g \quad \text{ou} \quad \frac{\mathrm{d}^2 z}{\mathrm{d}t^2} = g$$

Par intégration on peut déduire que :

$$v = gt + v_0$$
$$z = \frac{1}{2}gt^2 + v_0t + z_0$$