Feuilles d'exercices n°7 : Convergence de suites

Exercice

Donner un équivalent, le plus simple possible, de chacune des suites suivantes :

1.
$$u_n = \frac{5n - n^2 + 2n^7}{n^8 - 3n + 12}$$

2.
$$u_n = \sqrt{n+3} - \sqrt{n}$$

3.
$$u_n = \frac{n^2}{\sqrt{n^2 + n + 1}}$$

4.
$$u_n = e^{-n} + e^{-2n}$$

5.
$$u_n = \frac{2\sqrt{n} + e^{3n} - 5\ln n}{n^2 - 3\ln(2n^4)}$$

6.
$$u_n = \frac{1}{n^2} + e^{-3n}$$

7.
$$u_n = \ln\left(1 - \frac{2}{n^2} + \frac{1}{n}\right)$$

8.
$$u_n = \ln(1 + n^3)$$

$$9. \ u_n = \left(1 + \frac{1}{n^2}\right)^n$$

Exercice

On considère la suite (S_n) définie pour $n \ge 1$ par $S_n = \sum_{k=1}^{k=n} \frac{1}{\sqrt{k}}$.

1. Montrer que
$$\forall n \ge 1$$
, $\frac{1}{\sqrt{n+1}} \le 2(\sqrt{n+1} - \sqrt{n}) \le \frac{1}{\sqrt{n}}$.

- 2. À l'aide de la question précédente, déterminer la limite de la suite (S_n) .
- 3. On pose désormais $u_n = S_n 2\sqrt{n}$. Démontrer à l'aide du théorème de convergence monotone que (u_n) converge.
- 4. En déduire un équivalent simpple de S_n .

Exercice

On considère la suite (u_n) définie par $u_0=1$ et $\forall n\in\mathbb{N},\ u_{n+1}=2^nu_n$. On définit également la suite auxiliaire $v_n=\frac{u_n}{2^{\frac{n(n-1)}{2}}}$. Étudier la convergence de la suite (v_n) , puis en déduire une équivalent de la suite (u_n) .

Exercice

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = x + \ln x$.

- 1. Montrer que f est bijective.
- 2. En déduire que l'équation f(x) = na une unique solution, notée x_n , pour tout entier n (ne cherchez pas à la calculer, vous n'y arriverez pas).
- 3. Expliquer pourquoi la suite (x_n) est croissante, et quelle est sa limite.
- 4. Déterminer un équivalent simple de x_n .

Exercice (d'après EML)

On considère la fonction $f: x \mapsto x^2 + 4x + 2$ et une suite (u_n) vérifiant la relation de récurrence $u_{n+1} = f(u_n)$ (u_0) étant un réel quelconque).

- 1. Étudier les variations de la fonction f, et déterminer le nombre d'antécédents par f d'un réel m en fonction des valeurs de m. Résoudre en particulier f(x) = -1.
- 2. Montrer qu'il existe trois valeurs de u_0 pour lesquelles la suite (u_n) est stationnaire (c'est-à-dire qu'elle est constante à partir d'un certain rang).
- 3. Montrer que, $\forall n \in \mathbb{N}$, $u_{n+1} + 2 = (u_n + 2)^2$. En déduire la nature de la suite (u_n) selon la valeur de u_0 .

Exercice (d'après EDHEC)

On considère, pour tout entier naturel n, la fonction f_n définie par $f_n(x) = x^5 + nx - 1$.

- 1. Étudier les variations de f_n .
- 2. Montrer que, $\forall n \geq 1$, il existe un unique réel u_n tel que $f_n(u_n) = 0$.
- 3. Montrer que $u_n \leqslant \frac{1}{n}$ et en déduire la convergence de la suite (u_n) .
- 4. Montrer que $u_n \sim \frac{1}{n}$.
- 5. Déterminer un équivalent simple de $\frac{1}{n} u_n$.

Exercice

Soit (u_n) une suite bornée. On introduit alors deux suites auxiliaires définies par $a_n = \max(u_0, u_1, \dots, u_n)$ et $b_n = \min(u_0, u_1, \dots, u_n)$.

- 1. Montrer que les suites (a_n) et (b_n) sont convergentes.
- 2. Que peut-on dire de la suite (u_n) si elles ont la même limite?
- 3. On pose désormais $c_n = \max(u_n, u_{n+1}, u_{n+2}, \dots, u_{2n})$. Cette suite est-elle nécessairement convergente?

Exercice

Soit (u_n) une suite convergeant vers une limite finie l. Montrer que la suite (v_n) définie par $v_n = \frac{1}{n} \sum_{k=1}^{k=n} u_k$ (autrement dit, v_n est la moyenne des n premiers termes de la suite (u_n)) converge également vers l (commencez par le cas plus facile où l=0, et revenez à la définition de la limite).

Et pour finir en beauté, deux (extraits de) sujets de concours, à peine retouchés (une ou deux questions que vous ne pouvez pas faire ont été supprimées).

EMLyon 1991, Exercice 2

Soit
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = \frac{x+1}{\sqrt{x^2+1}} - 1$

I. Etude de f.

- 1. Former le tableau de variation de f
- 2. (a) Résoudre l'équation f(x) = x, d'inconnue $x \in \mathbb{R}$
 - (b) Résoudre l'équation $f(x) \leq x$, d'inconnue $x \in \mathbb{R}$
- 3. Tracer la courbe représentative (C) de f dans un repère orthonormé d'unité 5cm, et préciser la position relative de (C) et de la première bissectrice (on ne cherchera pas d'éventuels points d'inflexion)

II. Etude d'une suite récurrente.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0\in\mathbb{R}$ et pour tout entier $n,\,u_{n+1}=f(u_n)$

- 1. Que dire de $(u_n)_{n\in\mathbb{N}}$ si $u_0=-1$ ou $u_0=0$?
- 2. On suppose ici $u_0 < -1$.
 - (a) Montrer que $\forall n \in \mathbb{N}, u_n < -1$
 - (b) En déduire que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (c) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers un réel que l'on déterminera.
- 3. On suppose ici $-1 < u_0 < 0$.

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

4. On suppose ici $u_0 > 0$.

Sans en donner de démonstration, quel résultat obtiendrait-on concernant la convergence de $(u_n)_{n\in\mathbb{N}}$ dans ce cas?

Maths III HEC/ESCP 2002, Parties A et B du problème

Pour toutes suites numériques $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}}$, on définit la suite $u\times v=w$ par :

$$\forall n \in \mathbb{N}, \ w_n = \sum_{k=0}^n u_k \, v_{n-k}$$

Partie A: Exemples

1. Premiers exemples

Pour tout entier naturel n, calculer w_n en fonction de n dans chacun des cas suivants :

- (a) pour tout entier naturel n, $u_n = 2$ et $v_n = 3$.
- (b) pour tout entier naturel $n, u_n = 2^n$ et $v_n = 3^n$.

2. Programmation

Dans cette question, les suites u et v sont définies par : $\forall n \in \mathbb{N}, \ u_n = \ln(n+1)$ et $v_n = \frac{1}{n+1}$. Écrire un programme en Turbo-Pascal qui demande à l'utilisateur une valeur de l'entier naturel n, qui calcule et affiche les valeurs w_0, w_1, \ldots, w_n .

3. Un résultat de convergence

Dans cette question, la suite u est définie par : $\forall n \in \mathbb{N}, \ u_n = \left(\frac{1}{2}\right)^n$ et v est une suite de réels positifs, décroissante à partir du rang 1 et de limite nulle.

(a) Établir, pour tout couple d'entiers naturels (n, m) vérifiant n < m, l'inégalité :

$$\sum_{k=n+1}^{m} u_k \leqslant u_n$$

(b) Soit n un entier strictement supérieur à 1. Prouver les inégalités :

$$w_{2n} \leqslant v_0 u_{2n} + 2v_n + v_1 u_n$$
 et $w_{2n+1} \leqslant v_0 u_{2n+1} + 2v_{n+1} + v_1 u_n$

- (c) En déduire que les deux suites $(w_{2n})_{n\in\mathbb{N}}$ et $(w_{2n+1})_{n\in\mathbb{N}}$ convergent vers 0 ainsi que la suite $(w_n)_{n\in\mathbb{N}}$.
- (d) Soit u' la suite définie par : $\forall n \in \mathbb{N}, \ u'_n = \left(-\frac{1}{2}\right)^n$. À l'aide de la question précédente, montrer que la suite $u' \times v$ est convergente et de limite nulle.

Partie B : Application à l'étude d'un ensemble de suites

Dans cette partie, A désigne l'ensemble des suites $a=(a_n)_{n\in\mathbb{N}}$ de réels positifs vérifiant :

$$\forall n \in \mathbb{N}^{\times}, \quad a_{n+1} \leqslant \frac{1}{2}(a_n + a_{n-1})$$

- 1. Montrer que toute suite décroissante de réels positifs est élément de A et qu'une suite strictement croissante ne peut appartenir à A.
- 2. Soit $z = (z_n)_{n \in \mathbb{N}}$ une suite réelle vérifiant : $\forall n \in \mathbb{N}^{\times}, \ z_{n+1} = \frac{1}{2}(z_n + z_{n-1}).$
 - (a) Montrer qu'il existe deux constantes réelles α et β telles que l'on a :

$$\forall n \in \mathbb{N}, \quad z_n = \alpha + \beta \left(-\frac{1}{2}\right)^n$$

- (b) En déduire qu'il existe des suites appartenant à A et non monotones.
- 3. Soit $a=(a_n)_{n\in\mathbb{N}}$ un élément de A et b la suite définie par : $\forall n\in\mathbb{N},\ b_n=\left(-\frac{1}{2}\right)^n$.

On définit alors la suite c par : $c_0 = a_0$ et $\forall n \in \mathbb{N}^{\times}, \ c_n = a_n + \frac{1}{2}a_{n-1}$.

- (a) Montrer que la suite c est décroissante à partir du rang 1 et qu'elle converge vers un nombre ℓ que l'on ne cherchera pas à calculer.
- (b) Pour tout entier naturel n, établir l'égalité : $\sum_{k=0}^{n} \left(-\frac{1}{2}\right)^k c_{n-k} = a_n.$ Que peut-on en déduire pour les suites $b \times c$ et a?
- (c) Soit ε la suite définie par : $\forall n \in \mathbb{N}$, $\varepsilon_n = c_n \ell$ et d la suite $b \times \varepsilon$. En utilisant le résultat de la question 3. de la Partie 1, montrer que la suite d converge vers 0.
- (d) Pour tout entier naturel n, établir l'égalité : $d_n = a_n \frac{2}{3}\ell\left(1 \left(-\frac{1}{2}\right)^{n+1}\right)$. En déduire que la suite a converge et préciser sa limite.