PROF: ATMANI NAJIB 2ème BAC Sciences maths

NOMBRES COMPLEXES(1)

A)L'ensemble $\mathbb C$; définition et vocabulaire

il existe un ensemble noté $\mathbb C$ ses éléments s'appelles des nombres complexes qui vérifie : $\mathbb R \subset \mathbb C$ et contient un nombre non réel noté i et qui vérifie $i^2 = -1$ et tout nombre complexe z s'écrit et de façon unique comme : z = a + ib où a et b réels Le réel a s'appelle la partie réel de z; on écrit : a = Re(z) Le réel b s'appelle la partie imaginaire du nombre complexe z; on écrit : b = Im(z) et L'écriture : z = a + ib s'appelle l'écriture algébrique du nombre complexe z.

1) Soient
$$z = x + iy$$
 et $z' = x' + iy'(x; y) \in \mathbb{R}^2$ et $(x'; y') \in \mathbb{R}^2$

deux nombres complexes : $z = z' \Leftrightarrow x = x'ety = y'$

- 2) L'ensemble des nombres complexe n'est pas ordonné.
- 3) l'ensemble des nombres réels \mathbb{R} est une partie de \mathbb{C} $(\forall x \in \mathbb{R})(x = x + 0i)$ et $z \in \mathbb{R} \iff Im(z) = 0$
- 4) L'ensemble $i\mathbb{R}$ est une partie de \mathbb{C} , s'appelle L'ensemble des imaginaires purs ; $i\mathbb{R} = \{iy/y \in \mathbb{R}\}z \in i\mathbb{R} \iff Re(z) = 0$
- 5) $\mathbb{R} \cup i\mathbb{R} \subsetneq \mathbb{C}$ et $\mathbb{R} \cap i\mathbb{R} = \{0\}$ (\subsetneq : inclus strictement)
- 6) L'addition dans l'ensemble $\mathbb C$ est : Associative et

Commutative et 0 est l'élément neutre et Chaque élément z dans \mathbb{C} a un symétrique appelé l'opposé de z noté (-z)

7) multiplication dans $\mathbb C$ est : Associative et Commutative et 1 est l'élément neutre et Chaque élément z non nul z dans $\mathbb C$ a un

symétrique appelé l'inverse de z noté : $(\frac{1}{z} \text{ ou } z^{-1}) z \times \frac{1}{z} = 1$

8)On general les calculs dans $\mathbb C$ s'éffectuent de meme facon que sur $\mathbb R$ seulement on remplace i^2 par -1 et on a :

- a) $zz'=0 \Leftrightarrow z=0$ ou z'=0
- b) $z^0 = 1$ et $(\forall n \in \mathbb{N}*)(z^n = z \times z \times ... \times z)$ n fois

c)
$$z^{-n} = \frac{1}{z^n}$$
 d) $z^{n+m} = z^n \times z^m$ 5) $z^{n-m} = z^n / z^m$

$$e) \left(z^n\right)^m = z^{n \times m}$$

f)
$$z^n - z_1^n = (z - z_1)(z^{n-1} + z^{n-2}z_1 + ... + z^1z_1^{n-2} + z_1^{n-1})$$

g) Si
$$z \ne 1$$
 alors : $S = 1 + z^1 + z^2 + ... + z^n = \frac{1 - z^{n+1}}{1 - z}$

somme des termes d'une suite géométrique

9)
$$(z+z_1)^n = \sum_{k=0}^n C_n^k z^k z_1^{n-k}$$
 formule de binôme

Lorsque Im(z) = 0, z = a est réel.

Lorsque Re(z) = 0, z = ib est appelé imaginaire pur.

B)L'interprétation géométrique et représentation d'un nombre complexe :

Le plans (\mathcal{P}) est muni du repère orthonormé $\Re(O; \vec{u}; \vec{v})$ soit \mathcal{V}_2 le plan vectoriel associé à (\mathcal{P}) .

Soit z = a + ib un nombre complexe le couple (a, b) est associé à un point unique M dans le plan (\mathcal{P}) .

- 1) Le point M(a, b) s'appelle l'image du nombre complexe dans le plan (\mathcal{P})
- 2) Le complexe z s'appelle l'affixe du point M on écrit : z = aff(M) et on écrit : $z_M = a + ib$
- 3) Le vecteur \vec{u} s'appelle l'image du nombre complexe dans le

plan (\mathcal{P}) et Le complexe z s'appelle l'affixe du vecteur u on

écrit :
$$z = aff(\vec{u})$$
 on écrit : $z_{\vec{u}} = a + ib$

- 7) Le plan (\mathcal{P}) s'appelle un plan complexe
- a)L'axe (O; u) s'appelle l'axe des réels
- b) L'axe (O; v) s'appelle l'axe des imaginaires

Dans tout qui va suivre le plan complexe est muni d'un repère $\Re(O;\vec{u};\vec{v})$

- 8)Les complexes $z = a \in R$ sont des nombres réels et sont représentés sur sur l'axe des Réels.
- 9)Les complexes z = ib, $b \in R$ sont des imaginaires purs et sont représentés l'axe des imaginaires purs.
- 10) Les opérations sur les affixes.

Soient u et v deux vecteurs dans \mathcal{V}_2 ;

M et *N* deux points dans le plan (\mathcal{P}) et α un réel ; On a :

- 1) $aff(A) = aff(B) \Leftrightarrow A = B \text{ et } aff(\vec{u}) = aff(\vec{v}) \Leftrightarrow \vec{u} = \vec{v}$
- 2) aff(u + v) = aff(u) + aff(v)
- 3) $aff(\alpha u) = \alpha \times aff(u)$

4)
$$aff(\overrightarrow{AB}) = aff(B) - aff(A) = z_B - z_A$$

- 5) Soient [AB] un segment de milieu I; on a : $z_I = \frac{z_A + z_B}{2}$
- 6) pour 2 points pondérés : $G = Bar\{(A, \alpha); (B, \beta)\}$ on a $z_G = \frac{\alpha z_A + \beta z_B}{\alpha + \beta}$ pour 3 points pondérés :

$$G = Bar\{(A, \alpha); (B, \beta); (C, \gamma)\} \text{ on a : } z_G = \frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}$$

Prof/ATMANI NAJIB <u>1</u>

7) Soient A, B et C trois points distincts du plan d'affixes respectifs: Z_A , Z_B et Z_C

 $A, B \text{ et } C \text{ sont alignés} \iff \frac{z_C - z_A}{C} \in \mathbb{R}$

C) LE CONJUGUE D'UN NOMBRE COMPLEXE.

1) Soient x et y deux réels et z = x+iy. Le conjugué du nombre z est le nombre complexe noté z défini par : z = x - iy. et les images de z et z sontsymétriques par rapport à l'axe des réels.

 $2)_{z \in \mathbb{C}}$ et $z' \in \mathbb{C}$

a)si z = x + iy alors $z \times \overline{z} = x^2 + y^2$

= b) z = z c) $z - \overline{z} = 2i \operatorname{Im}(z)$ d) $z + \overline{z} = 2 \operatorname{Re}(z)$

e) $z \in \mathbb{R} \Leftrightarrow z = \overline{z}$ f) $z \in i\mathbb{R} \Leftrightarrow z + \overline{z} = 0$

g) $\overline{z+z'} = \overline{z} + \overline{z'}$ h) $\overline{z \times z'} = \overline{z} \times \overline{z'}$

k) $\left(\frac{1}{z}\right) = \frac{1}{z}$ si $z \neq 0$ 1) $\left(\frac{z'}{z}\right) = \frac{\overline{z'}}{z}$ si $z \neq 0$

m) $\overline{(z^n)} = (\overline{z})^n n \in \mathbb{Z}$ n) $\overline{z} = \lambda \overline{z} \quad \forall z \in \mathbb{C} \text{ et } \forall \lambda \in \mathbb{R}$

D) LE MODULE D'UN NOMBRE COMPLEXE.

1)Soit z = x+iy un nombre complexe avec $x \in \mathbb{R}$ et $y \in \mathbb{R}$

le réel positif $|z| = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}$ s'appelle le module du

nombre complexe z

2) Pour tous complexes z et z' et pour tout n dans \mathbb{N} on a :

1) $|\overline{z}| = |-z| = |z|$ 2) $|z|^2 = z\overline{z}$ 3) $|z| = 1 \Leftrightarrow z\overline{z} = 1$

4) $|z| = 0 \Leftrightarrow z = 0$ 5) $|z \times z'| = |z| \times |z'|$

6) $\left| \frac{1}{z} \right| = \frac{1}{|z|}$ et $\left| \frac{z'}{z} \right| = \frac{|z'|}{|z|}$ si $z \neq 0$

7) $|z^n| = |z|^n$ si $z \neq 0$ et $\forall n \in \mathbb{Z}$ 8) $|z + z'| \leq |z| + |z'|$

8)si M est l'image du nombre complexe z alors |z| = OM

9Si Aet B ont pour affixes z_A et z_B alors:

 $\|\overrightarrow{AB}\| = AB = |z_B - z_A|$

E) forme trigonométriqe et argument d'un complexe

1)Le plan complexe est menu d'un repère (O; u; v) et

 $z \in \mathbb{C}^*$ et M(z) son image. L' argument du nombre

complexe **z** une mesure (en radian) de l'angle [u;OM] On le note par arg(z)

2) $z \in \mathbb{C}^*$ et $y \in \mathbb{R}^*$

a) $z \in \mathbb{R}^{*-} \Leftrightarrow \arg z \equiv \pi [2\pi]$ b) $z \in \mathbb{R}^{*+} \Leftrightarrow \arg z \equiv 0 [2\pi]$

c) $\arg(iy) \equiv \frac{\pi}{2} [2\pi]$ si y > 0 et $\arg(iy) \equiv -\frac{\pi}{2} [2\pi]$ si y < 0

d) $\arg(-z) \equiv \pi + \arg z[2\pi]$ e) $\arg z \equiv -\arg z[2\pi]$

3) Tout nombre complexe non nul z à une écriture de la forme $z = |z|(\cos\theta + i\sin\theta)$ Où $\arg(z) \equiv \theta$ [2 π] Cette écriture s'appelle la forme trigonométrique du nombre complexe non nul z

4) $z \in \mathbb{C}^*$ Si on a $z = r(\cos\theta + i \sin\theta)$ avec r > 0

Alors |z| = r et $arg(z) \equiv \theta \ [2\pi]$ on écrit : $z = [r, \theta]$

5) Soit z et z' deux nombres complexes non nuls :

b) arg $(z \times z') \equiv \arg(z) + \arg(z') [2\pi]$

 $[r, \theta] \times [r', \theta'] = [rr', \theta\theta']$

c) arg $(1/z) \equiv -\arg(z) [2\pi]$ et on a : $1/[r, \theta] = [1/r, -\theta]$

d) arg $(z/z') \equiv \arg(z) - \arg(z') [2\pi]$

et on a : $[r, \theta] / [r', \theta'] = [r/r', \theta - \theta']$

e) $arg(z^n) \equiv n \ arg(z) [2\pi]$ et on a : $[r, \theta]^n = [r^n, n\theta]$

f) $arg(-z) \equiv arg(z) + \pi [2\pi]$ et on $a : -[r, \theta] = [r, \pi + \theta]$

g) arg $(\overline{z}) \equiv -\arg(z) [2\pi]$ et on a : $\overline{[r;\theta]} = [r,-\theta]$

F)Les formes trigonométriques des racines carrées.

1)On appelle racine carrée d'un complexe z tout complexe

u tel que $u^2 = z$

2)Un complexe non nul admet deux racines carrées.

3) Soit $z = [r, \theta]$ un complexe non nul; les racines carrées

de $[r, \theta]$ sont les complexes : $u_1 = \left| \sqrt{r}; \frac{\theta}{2} \right|$ et et $u_2 = -u_1$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien Bon courage

