TD: Exercices d'applications

PROF: ATMANI NAJIB 2BAC SM BIOF

TD: FONCTIONS PRIMITIVES

Exercice1: Soit la fonction f définie sur $]0; +\infty[$

par:
$$f(x) = 2x^2 + x + 1 + \frac{1}{x^2}$$

1)Déterminer les fonctions primitives de la fonction f sur $]0; +\infty[$

2)Déterminer la fonction primitive de la fonction f sur $]0;+\infty[$ tel que : F(1)=3

Exercice2: (situation directe): Déterminer une fonction primitive des fonctions suivantes :

1)
$$f(x) = 5x^4 + 3x + 1$$
 2) $f(x) = \frac{1}{\sqrt{x}} + \cos x + \sin x - 1$

3)
$$f(x) = \sin x + x \cos x$$
 4) $f(x) = (2x-1)^3$

5)
$$f(x) = \frac{x}{(x^2 - 1)^2}$$
 6) $f(x) = 5x\sqrt[3]{3x^2 + 1}$

7)
$$f(x) = \frac{4x+1}{(2x^2+x)^4}$$
 8) $f(x) = 7x\cos(\pi x^2 + 3)$

Exercice3: Déterminer une fonction primitive des fonctions suivantes:

1)
$$f(x) = \frac{2}{x^2 + 2x + 4}$$
 2) $f(x) = \frac{6}{x^2 + x + 1}$

Exercice4: Déterminer une fonction primitive des fonctions suivantes:

1)
$$f(x) = \frac{2}{4x^2 + 4x + 1}$$
 2) $f(x) = \frac{6}{x^2 + x + 1}$

Exercice5: Soit la fonction f définie par :

$$f(x) = 2x + 1 \text{ si } x \le 1$$

$$f(x) = 2x - 1 \text{ si } x > 1$$

Montrer que la fonction f n'admet pas de primitive sur \mathbb{R}

Exercice6 : Déterminer les fonctions primitives des fonctions:

1)
$$f(x) = \frac{x^2 + 5}{x^2 + 1}$$

1)
$$f(x) = \frac{x^2 + 5}{x^2 + 1}$$
 2) $f(x) = \frac{\sin x}{\sqrt[3]{2 + \cos x}}$

$$3) f(x) = 2x \sin x + x^2 \cos x$$

4)
$$f(x) = (4x+5)^2$$

5)
$$f(x) = 2\sqrt{2x+1}$$

$$6) f(x) = \frac{x}{\sqrt{x^2 + 1}}$$

7)
$$f(x) = x\sqrt{x^2 + 1}$$

8)
$$f(x) = \tan^2 x$$

9)
$$f(x) = \cos^4 x$$
 (utiliser : $\cos^2 x = (1 + \cos 2x)/2$))

10)
$$f(x) = \sin^3 x$$
 (Remarquer que : $\sin^3 x = \sin x \sin^2 x$)

Exercice7: Soit la fonction f définie sur $[0; +\infty]$

par:
$$f(x) = \frac{x^2 + 2x}{(x+1)^2}$$

1)Déterminer les réels a et b tels que :

$$f(x) = a + \frac{b}{(x+1)^2}$$
 $\forall x \in [0; +\infty[$

2)Déterminer la fonction primitive F de la fonction f sur $[0;+\infty[$ tel que : $F(1)=\frac{5}{2}$

Exercice8: Soit la fonction f définie sur $[1; +\infty]$

$$par: f(x) = x\sqrt{x-1}$$

1)montrer que :
$$f(x) = \sqrt{(x-1)^3} + \sqrt{x-1} \quad \forall x \in [1; +\infty[$$

2)Déterminer la fonction primitive *F* de la fonction f sur $[1; +\infty[$ tel que : F(2)=1

Exercice9: Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{5x^4 + 40x^2 + 20x + 80}{(x^2 + 4)^2}$$

1)Déterminer les réels a et b et c tels que :

$$f(x) = \frac{ax+b}{(x^2+4)^2} + c \qquad \forall x \in \mathbb{R}$$

2)Déterminer la fonctions primitives F de la fonction f sur \mathbb{R} tel que : F(0) = c

> C'est en forgeant que l'on devient forgeron Dit un proverbe.

