Résumé de Cours : FONCTIONS PRIMITIVES

PROF: ATMANI NAJIB 2BAC SM BIOF

FONCTIONS PRIMITIVES

FONCTION PRIMITIVE D'UNE FONCTION

Définition : Soit f une fonction définir sur un intervalle I; On dit que la fonction F est une fonction primitive de la fonction f sur l'intervalle I si :1)F est dérivable sur I 2) $(\forall x \in I)(F'(x) = f(x))$

Propriété1: Si f est continue sur I alors f admet une fonction primitive sur I

Propriété2 : Si f admet une fonction primitive F sur I alors toutes les fonctions primitives de f sur I s'écrivent de la : forme : $F + \lambda$ où λ est un réel.

Propriété3 : Si F_1 et F_2 sont deux fonction primitive d'une fonction f sur I alors :

 $(\forall x \in I)(F_2(x) = F_1(x) + \lambda) \text{ où } \lambda \in \mathbb{R}$

Propriété4 :Si f admet une fonction primitive sur I et

 $x_0 \in I$; alors il existe une unique fonction F_0 fonction

Primitive de f telle que $F_0(x_0) = y_0$ où y_0 un réel quelconque.

Propriété5 : Si F est une fonction primitive de la fonction f sur l'intervalle I et G une fonction primitive de la fonction g sur l'intervalle I et α un réel alors :

1) (F + G) est une fonction primitive de la fonction (f + g) sur I

2) (αF) est une fonction primitive de la fonction (αf) sur I Tableau des fonctions primitives usuelles.

La fonction	Sa fonction primitive
$\alpha \ (\alpha \in \mathbb{R})$	$\alpha x + c$
$x^n \ (n \in \mathbb{N})$	$\frac{1}{n+1}x^{n+1}+c$
\sqrt{x}	$\frac{2}{3}\sqrt{x^3} + c$
$\sqrt[n]{x}$	$\frac{n}{n+1}\sqrt[n]{x^{n+1}}$
$x^r \ (r \in \mathbb{Q}/\{-1\})$	$\frac{1}{r+1}x^{r+1}+c$
sin(ax + b)	$\frac{-1}{a}\cos(ax+b)+c$
cos(ax+b)	$\frac{1}{a}\sin(ax+b)+c$
$\frac{a}{1+x^2}$	$a \times arcta n(x) + c$

Opérations sur les fonctions primitives.

Les seules opérations sur les fonctions primitives sont : la somme et le produit par un réel. Mais grâce au tableau des opérations sur les fonctions dérivées on peut en déduire :

La fonction	Sa fonction primitive
u' + v'	$u + v + C^{te}$
$\alpha u'$	$\alpha u + C^{te}$
$u'u^n (n \in \mathbb{N})$	$\frac{1}{n+1}u^{n+1} + C^{te}$
$\frac{u'}{u^2}$	$\frac{-1}{u} + C^{te}$
$\frac{u'}{2\sqrt{u}}$	$\sqrt{u} + C^{te}$
$u'\sqrt[n]{u} \ (n \in \mathbb{N}^*)$	$\frac{n}{n+1} \sqrt[n]{u^{n+1}} + C^{te}$
$u'u^r \ (r \in \mathbb{Q}/\{-1\})$	$\frac{1}{r+1}u^{r+1} + C^{te}$
$u' \times v'ou$	vou + C ^{te}
$\frac{u'}{u^2+1}$	arctan(u) + C

La ligne en couleur gaune est une généralisation des 4 lignes précédentes.

Quelque formule utile pour calculer les primitives

$$1 + \tan^2 a = \frac{1}{\cos^2 a}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos \left(a + b \right) + \cos \left(a - b \right) \right]$$

$$\sin a \sin b = -\frac{1}{2} \left[\cos \left(a + b \right) - \cos \left(a - b \right) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin \left(a + b \right) + \sin \left(a - b \right) \right]$$

$$\cos a \sin b = -\frac{1}{2} \left[\sin \left(a + b \right) - \sin \left(a - b \right) \right]$$

Si
$$t = \tan\left(\frac{x}{2}\right)$$
 on a:

$$\sin x = \frac{2t}{1+t^2}$$
 et $\cos x = \frac{1-t^2}{1+t^2}$ et $\tan x = \frac{2t}{1-t^2}$

C'est en forgeant que l'on devient forgeron Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien