Résumé de Cours fonctions exponentielles

PROF: ATMANI NAJIB

FONCTIONS EXPONENTIELLES

2BAC SM

Propriété et définition : La fonction ln admet une fonction réciproque définie de] - ∞, +∞ [Vers]0, +∞[appelée fonction Exponentielle

népérienne notée : *exp* et qui est strictement monotone

et on a pour tout x et y dans \mathbb{R} :

1)
$$e^{x+y} = e^x \times e^y$$
 2) $e^{-x} = \frac{1}{e^x}$ 3) $e^{x-y} = \frac{e^x}{e^y}$

4)
$$e^{rx} = (e^x)^r \quad (r \in \mathbb{Q})$$
 5) $(e^{\ln x} = x) \quad (\forall x \succ 0)$

6)
$$\left(\ln\left(e^{x}\right)=x\right)\left(\forall x\in\mathbb{R}\right)$$

7)
$$(\forall y \succ 0) (\forall x \in \mathbb{R}) (e^x = y) \Leftrightarrow (x = \ln y)$$

7)
$$(\forall y \succ 0) (\forall x \in \mathbb{R}) (e^x = y) \Leftrightarrow (x = \ln y)$$

8) $(\forall y \succ 0) (\forall x \in \mathbb{R}) (e^x = e^y) \Leftrightarrow (x = y)$
9) $(\forall y \succ 0) (\forall x \in \mathbb{R}) (e^x \ge e^y) \Leftrightarrow (x \ge y)$

9)
$$(\forall y \succ 0) (\forall x \in \mathbb{R}) (e^x \ge e^y) \Leftrightarrow (x \ge y)$$

10)La fonction exp est dérivable sur \mathbb{R}

et (
$$\forall x \in \mathbb{R}$$
) $(e^x)' = e^x$

11)Si u est une fonction dérivable sur un intervalle I

alors la fonction $e^{u(x)}$ est dérivable sur I et

$$(\forall x \in I)(\left(e^{u(x)}\right)' = u'(x)e^{u(x)}))$$

12)Si u est une fonction dérivable alors une primitive de $u'(x) \cdot e^{u(x)}$ est $e^{u(x)}$.

(Limites usuelles)

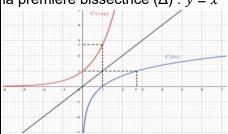
1)
$$\lim_{x \to +\infty} e^x = +\infty$$
 2) $\lim_{x \to -\infty} e^x = 0$ 3) $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$

4)
$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$
 5) $\lim_{x \to -\infty} x e^x = 0^-$ 6) $\lim_{x \to -\infty} x^n e^x = 0$

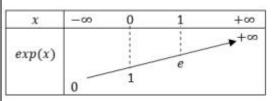
7)
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$
 avec: $n \in \mathbb{N}^*$

Représentation de la fonction exp

Les courbes C_{ln} et C_{exp} sont symétriques par rapport à la première bissectrice (Δ) : y = x



Le Tableau de variation et L'exp :



FONCTION EXPONENTIELLE DE BASE a

Soit a > 0 et $a \neq 1$; on a:

$$1)(\forall x \in \mathbb{R}) \ a^x = e^{x \ln a}$$

2)fonction \exp_a est définie sur $\mathbb R$

3)
$$\forall x \in \mathbb{R} \ a^x \succ 0$$

4)
$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}^* \ a^x = y \Leftrightarrow x = \log_a y$$

5)
$$\forall x \in \mathbb{R} \log_a(a^x) = x$$
 6) $\forall x \in \mathbb{R}^*_+ a^{\log_a(x)} = x$

 $(\forall a \in \mathbb{R}*+)(\forall b \in \mathbb{R}*+)(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R})$

7)
$$a^x \times a^y = a^{x+y}$$
 8) $a^{-x} = \frac{1}{a^x}$ 9) $(a \times b)^x = a^x \times b^x$

10)
$$(a^x)^y = a^{x \times y}$$
 11) $a^{x-y} = \frac{a^x}{a^y}$ 12) $(\frac{a}{b})^x = \frac{a^x}{b^x}$

13)
$$(a^x)' = a^x \times \ln a$$
 14) $a^{rx} = (a^x)^r$

15)a) $x \rightarrow a^x$ est strictement croissante si a > 1

b) $x \rightarrow a^x$ est strictement décroissante si 0 < a < 1

$$16)(\forall x \in \mathbb{R}) \left(a^{x}\right)' = \left(\ln a\right) a^{x}$$

17)Si u est une fonction dérivable alors

une primitive de
$$u'(x)a^{u(x)}$$
 est $\frac{1}{\ln a}a^{u(x)}$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

