Exponentielle exercices corrigés

Fonction exponentielle

Exercices corrigés

1. 1. Fesic 1996, exercice 2	1	1. 14. Recherche de fonction	16
1. 2. Fesic 1996, exercice 3	1	1. 15. Etude de fonction hyperbolique	18
1. 3. Fesic 1996, exercice 4	2	1. 16. Une intégrale peu engageante	20
1. 4. Fesic 2000, exercice 6	3	1. 17. Tangente hyperbolique	22
1. 5. Fesic 2000, exercice 4	3	1. 18. Tangente hyperbolique et primitives	24
1. 6. Banque 2004	4	1. 19. Antilles 09/2008 7 points	27
1. 7. Expo + aire, Amérique du Nord 2005	5	1. 20. ROC+fonction intégrale, Am. du Nord 2007	29
1. 8. Basique, N. Calédonie, nov 2004	7	1. 21. Equation différentielle, équation fonctionnelle	
1. 9. Basiques	8	et sinus hyperbolique, La Réunion, juin 2004	32
1. 10. Une fonction	9	1. 22. Exp, équation, suite réc, Am. du Sud, juin 2004	4 33
1. 11. Un exercice standard	11	1. 23. Exp et aire	35
1. 12. Une suite de fonctions	12	1. 24. Caractéristique de Exp et tangentes	37
1. 13. ln et exp	15	• • • •	

1. 1. Fesic 1996, exercice 2

Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = \frac{e^x}{x^3}$ et C sa courbe représentative.

- a. f est une bijection de \mathbb{R}_+^* sur $\left[\frac{e^3}{27}; +\infty\right[$.
- b. La droite (Δ) d'équation x = 3 est axe de symétrie de la courbe C.
- c. C admet une unique tangente parallèle à l'axe (Ox) et elle est obtenue au point d'abscisse x = 3.
- d. La tangente à C au point d'abscisse 1 a pour équation : y = -2ex e.

Correction

- a. **Faux**: La fonction f est dérivable sur \mathbb{R}_+^* et $f'(x) = \frac{e^x(x-3)}{x^4}$, or pour $x \in [3, +\infty[, f'(x) \ge 0 \text{ car}]$ $e^x > 0$ et $x^4 > 0$ et pour $x \in [0, 3]$ f'(x) < 0. f n'est pas monotone sur \mathbb{R}_+^* et elle ne réalise donc pas une bijection.
- b. **Faux**: Si la droite Δ d'équation x=3 est axe de symétrie de la courbe C alors f doit être paire dans le repère $\left(\vec{I},\vec{i},\vec{j}\right)$ avec $I\left(3,0\right)$. Posons $\begin{cases} y=Y\\ x=X+3 \end{cases}$ alors $Y=f\left(X\right)=\frac{e^{X+3}}{\left(X+3\right)^3}\neq f\left(-X\right)=\frac{e^{-X+3}}{\left(-X+3\right)^3}$. Donc f

n'est pas paire dans le repère $(I; \vec{i}, \vec{j})$ avec I(3, 0).

- c. **Vrai**: $f'(x) = \frac{e^x(x-3)}{x^4} = 0$ pour x = 3 car $e^x > 0$ donc C admet une unique tangente parallèle à l'axe (Ox) et elle est obtenue au point d'abscisse x = 3.
- d. **Faux**: La tangente à C au point d'abscisse 1 a pour équation : $y = f'(1) \cdot (x-1) + f(1) = -2ex + 3e$.

1. 2. Fesic 1996, exercice 3

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{e^{-x}}{x^2 + 1} - \frac{x}{2}$ et C sa courbe représentative.

a.
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

b. La droite D d'équation $y = -\frac{x}{2}$ est asymptote à C.

c. f est décroissante sur \mathbb{R} .

d. L'équation f(x) = 0 a une unique solution sur \mathbb{R} .

Correction

a. **Faux**:
$$\lim_{x \to +\infty} \frac{e^{-x}}{x^2 + 1} - \frac{x}{2} = \lim_{x \to +\infty} \frac{1}{e^x (x^2 + 1)} - \frac{x}{2} = -\infty \text{ car } \lim_{x \to +\infty} \frac{1}{e^x (x^2 + 1)} = 0$$
.

b. **Vrai**: $\lim_{x \to +\infty} f(x) - \left(-\frac{x}{2}\right) = \lim_{x \to +\infty} \frac{e^{-x}}{x^2 + 1} = 0$ donc la droite D d'équation $y = -\frac{x}{2}$ est asymptote à C en $+\infty$ et elle est située au dessus de C car $\frac{e^{-x}}{x^2 + 1} > 0$.

c. **Vrai** : La fonction f est dérivable sur $\mathbb R$;

$$f'(x) = \frac{-e^{-x}(x^2+1) - e^{-x}(2x)}{(x^2+1)^2} - \frac{1}{2} \quad \text{soit} \quad f'(x) = \frac{-e^{-x}(x^2+2x+1)}{(x^2+1)^2} - \frac{1}{2} = \frac{-e^{-x}(x+1)^2}{(x^2+1)^2} - \frac{1}{2} \quad \text{qui est toujours}$$
 strictement négative car somme de deux termes strictement négatifs. f est décroissante sur \mathbb{R} .

d. **Vrai**: La fonction f est dérivable et strictement décroissante sur \mathbb{R} , f(0)=1 positif et $f(1)=\frac{1}{2e}-\frac{1}{2}$ donc négatif. f est donc bijective et il existe un unique réel $\alpha \in [0, 1]$ solution de l'équation f(x)=0.

1. 3. Fesic 1996, exercice 4

Soit f la fonction définie par : $f(x) = \frac{e^x}{1 + e^x} - \ln(1 + e^x)$ et C sa courbe représentative.

a.
$$f$$
 est définie et dérivable sur \mathbb{R} , et pour tout x réel on a : $f'(x) = \frac{e^{2x}}{(1+e^x)^2}$.

b.
$$\lim_{x \to -\infty} f(x) = 0$$
.

c. L'équation f(x) = 0 n'a pas de solution réelle.

d. La droite D d'équation y = 1 + x est asymptote à C.

Correction

a. **Faux**:
$$f'(x) = \frac{e^x(e^x + 1) - e^{2x}}{(e^x + 1)^2} - \frac{e^x}{e^x + 1} = \frac{-e^{2x}}{(e^x + 1)^2} < 0$$
.

b. **Vrai**:
$$\lim_{x \to -\infty} \frac{e^x}{1 + e^x} - \ln(1 + e^x) = 0$$
 car $\lim_{x \to -\infty} e^x = 0$ et $\ln 1 = 0$.

c. **Vrai**: D'après a. f'(x) < 0 donc f est strictement décroissante et d'après b) f tend vers 0 en $-\infty$ donc f < 0 sur \mathbb{R} et l'équation n'a pas de solution réelle dans $I = \left] -\frac{1}{2}, +\infty \right[$.

d. **Faux**:
$$\lim_{x \to +\infty} \frac{e^x}{e^x + 1} = \lim_{x \to +\infty} \frac{e^x}{e^x \cdot \left(\frac{1}{e^x} + 1\right)} = 1 \text{ car } \lim_{x \to +\infty} \frac{1}{e^x} = 0$$

$$\lim_{x \to +\infty} \ln(1 + e^x) = \lim_{x \to +\infty} \ln e^x (e^{-x} + 1) = \lim_{x \to +\infty} x + \ln(e^{-x} + 1)$$

$$\operatorname{donc} \lim_{x \to +\infty} -\ln(1+e^x) - x = \lim_{x \to +\infty} -2x - \ln(e^{-x} + 1) = -\infty \text{ et pour finir } \lim_{x \to +\infty} f(x) - \left(1+x\right) = -\infty.$$

Conclusion : la droite D d'équation y=x+1 n'est pas asymptote à f(x) mais la droite d'équation y=1-x est asymptote à f(x).

1. 4. Fesic 2000, exercice 6

Pour tout réel m, on considère l'équation (E_m) : $e^{2x} - 2e^x - m = 0$.

- a. L'unique valeur de m pour laquelle x = 0 est solution de l'équation (E_m) est m = 0.
- b. Pour toute valeur de m, l'équation (E_m) admet au moins une solution.
- c. Si -1 < m < 0, l'équation (E_m) a deux solutions positives.
- d. Si m > 0, l'équation (E_m) a une unique solution.

Correction

- **a. Faux** : Si x = 0 alors l'équation (E_m) s'écrit $e^0 2e^0 m = 0$ soit m = -1.
- **b. Faux** : Posons $X = e^x > 0$, on a alors l'équation $X^2 2X m = 0$ où $\Delta = 4 + 4m$.

On obtient au moins une solution pour $m \ge -1$ telles que $X_1 = \frac{2 + 2\sqrt{1 + m}}{2} = 1 + \sqrt{1 + m}$ et $X_2 = 1 - \sqrt{1 + m}$.

Si m < -1 il n'y a pas de solution.

c. Faux : X_1 est évidemment positive. Etudions le signe de X_2 : $1 - \sqrt{1+m} > 0 \Leftrightarrow 1 > \sqrt{1+m} \Leftrightarrow m < 0$.

Donc pour -1 < m < 0 il y a deux solutions X_1 et X_2 positives et on obtient $x_1 = \ln\left(1 + \sqrt{1 + m}\right) > \ln 1$ soit $x_1 > 0$ et $x_2 = \ln\left(1 - \sqrt{1 + m}\right) < \ln 1$ soit $x_2 < 0$.

- **d. Vrai :** Si m>0, $1-\sqrt{1+m}<0$ donc $X_2=e^x>0$ n'a pas de solutions et $1+\sqrt{1+m}>0$ par conséquent $x_1=\ln\left(1+\sqrt{1+m}\right)$.
- 1. 5. Fesic 2000, exercice 4

Soit
$$f$$
 la fonction définie sur $]0$; $+\infty$ [par : $f(x) = \left(\frac{1-x^2}{x}\right)e^{-x}$ et g définie par : $g(x) = x^3 - x^2 - x - 1$.

Répondre par vrai ou faux en justifiant sa réponse.

A.
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

- B. la droite d'équation y = 0 est une asymptote à la courbe représentative de f quand f tend vers $+\infty$.
- C. La fonction dérivée de f et la fonction g ont le même signe.
- D. La fonction f atteint un minimum pour x = 1.

Correction

A: FAUX

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1 - x^2}{x} \right) e^{-x} = \lim_{x \to +\infty} \left(\frac{1}{x e^x} - \frac{x}{e^x} \right) = 0 \text{ car } \lim_{x \to +\infty} \frac{1}{x e^x} = 0 \text{ et } \lim_{x \to +\infty} \frac{x}{e^x} = 0 \text{ (théorème)}.$$

R · **VRAI**

La réponse est dans la question précédente ; comme $\lim_{x\to +\infty} f(x) = 0$, par définition, la droite d'équation y=0 est asymptote à la courbe.

C: VRAI

$$f(x) = \left(\frac{1 - x^2}{x}\right)e^{-x} = \frac{1}{x}e^{-x} - xe^{-x} \; ; f \text{ est dérivable sur } \mathbb{R}^*.$$

$$f'(x) = -\frac{1}{x^2}e^{-x} - \frac{1}{x}e^{-x} - e^{-x} + xe^{-x} = \frac{e^{-x}}{x^2}\left(x^3 - x^2 - x - 1\right) = \frac{e^{-x}}{x^2}g(x).$$

Dans la mesure où on compare f et g sur l'intersection de leur domaine de définition (\mathbb{R}^*+), les deux fonctions ont le même signe.

D: FAUX

La fonction f 'ne s'annule pas en 1, elle n'admet donc pas de minimum pour x = 1.

Remarque : f(1) = 0, la courbe coupe donc l'asymptote en 1, ... mais aussi en -1.

1. 6. Banque 2004

Le plan est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$.

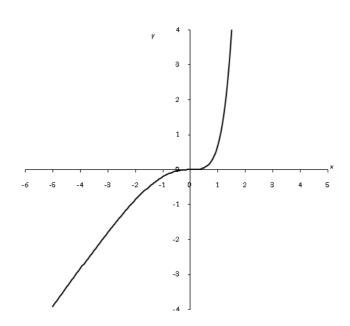
Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{1}{2}e^{2x} - 2$, $1e^x + 1$, 1x + 1, 6.

- 1. Faire apparaître sur l'écran de la calculatrice graphique la courbe représentative de cette fonction dans la fenêtre $[-5; 4] \times [-4; 4]$. Reproduire l'allure de la courbe obtenue sur la copie.
- 2. D'après cette représentation graphique, que pourrait-on conjecturer :
- a. Sur les variations de la fonction f ?
- b. Sur le nombre de solutions de l'équation f(x) = 0 ?
- 3. On se propose maintenant d'étudier la fonction f.
- a. Résoudre dans \mathbb{R} l'inéquation $e^{2x} 2,1e^x + 1,1 > 0$ (on pourra poser $e^x = X$ pour résoudre).
- b. Etudier les variations de la fonction f.
- c. Déduire de cette étude le nombre de solutions de l'équation f(x) = 0.
- 4. On veut représenter, sur l'écran d'une calculatrice, la courbe représentative de la fonction f sur l'intervalle [-0.05; 0.15], de façon à visualiser les résultats de la question 3.

Quelles valeurs extrêmes de l'ordonnée y peut-on choisir pour la fenêtre de la calculatrice ?

Correction

1.



- 2. a. f semble croissante.
- b. L'équation f(x) = 0 semble avoir une seule solution en 0.
- 3. a. $e^{2x} 2.1e^x + 1.1 > 0$ donne $X^2 2.1X + 1.1 > 0$; cherchons les racines : $\Delta = 2.1^2 4.4 = 0.01 = (0.1)^2$

d'où les racines $X_1 = \frac{2,1+0,1}{2} = 1,1, X_1 = \frac{2,1-0,1}{2} = 1$; on peut alors factoriser :

$$X^2 - 2, 1X + 1, 1 > 0 \Leftrightarrow (X - 1, 1)(X - 1) > 0 \Leftrightarrow (e^x - 1, 1)(e^x - 1) > 0$$
.

Les solutions sont alors $e^x \in]-\infty$; $1[\cup]1,1$; $+\infty[\Leftrightarrow e^x \in]0$; $1[\cup]1,1$; $+\infty[\Leftrightarrow x \in]-\infty$; $0[\cup]\ln(1,1)$; $+\infty[$.

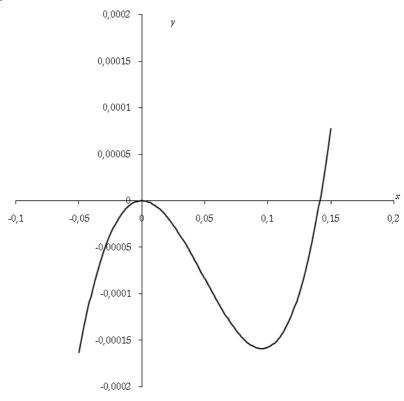
b. $f'(x) = \frac{1}{2} 2e^{2x} - 2$, $1e^x + 1$, $1 = e^{2x} - 2$, $1e^x + 1$, 1. Le signe de f' est celui calculé précédemment.

c.
$$f(0) = \frac{1}{2}e^0 - 2, 1e^0 + 1, 1.0 + 1, 6 = 0, 5 - 2, 1 + 1, 6 = 0$$
;

$$f(\ln(1,1)) = \frac{1}{2}e^{2\ln(1,1)} - 2, 1e^{\ln(1,1)} + 1, 1\ln(1,1) + 1, 6 \approx -0,0001588.$$

Comme $f(\ln(1,1)) < 0$, f s'annule en 0 puis une seconde fois pour une valeur de x supérieure à $\ln(1,1)$. Il y a donc deux solutions.

4. Il suffit de prendre $y_{\min} < f(\ln(1,1))$ et $y_{\max} > 0$ comme ci-dessous. Par exemple [-0,0002;0,0002] convient très bien.



1. 7. Expo + aire, Amérique du Nord 2005

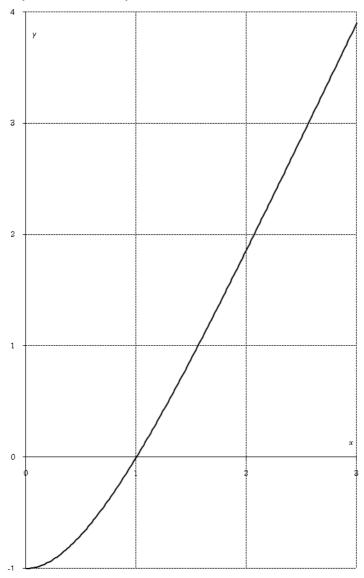
5 points

Soit f la fonction définie sur l'intervalle $[0; +\infty [par f(x) = (x-1)(2-e^{-x})]$.

Sa courbe représentative C est tracée dans le repère orthonormal ci-dessous (unité graphique 2 cm).

- 1. a. Étudier la limite de f en $+\infty$.
- b. Montrer que la droite Δ d'équation y=2x-2 est asymptote à C .
- c. Étudier la position relative de C et Δ .
- 2. a. Calculer f'(x) etmontrer que $f'(x) = xe^{-x} + 2(1-e^{-x})$.
- b. En déduire que, pour tout réel x strictement positif, f'(x) > 0.

- c. Préciser la valeur de f'(0), puis établir le tableau de variations de f.
- 3. À l'aide d'une intégration par parties, calculer l'aire, exprimée en cm², du domaine plan limité par la courbe C, la droite Δ et les droites d'équations x=1 et x=3.
- 4. a. Déterminer le point A de C où la tangente à C est parallèle à Δ .
- b. Calculer la distance, exprimée en cm, du point A à la droite Δ .



Correction

1. a. En $+\infty$, x-1 tend vers $+\infty$ et $2-e^{-x}$ tend vers 2 car e^{-x} tend vers 0; f a pour limite $+\infty$.

b. $f(x)-(2x-2)=(x-1)\left(2-e^{-x}\right)-2(x-1)=(x-1)(-e^{-x})$: avec les croissances comparées, e^{-x} emmène tout le monde vers 0, la droite Δ d'équation y=2x-2 est bien asymptote à C.

c. Signe de $f(x)-(2x-2)=-(x-1)e^{-x}$: lorsque $x\leq 1$ c'est positif, donc C est au-dessus de Δ ; lorsque $x\geq 1$ c'est négatif, donc C est en dessous de Δ .

3. a.
$$f'(x) = (x-1)!(2-e^{-x})+(x-1)(2-e^{-x})! = 2-e^{-x}+(x-1)e^{-x} = 2-2e^{-x}+xe^{-x}$$
 d'où $f'(x) = xe^{-x}+2(1-e^{-x})$.

b. Comme x est positif, $xe^{-x} > 0$ et $x > 0 \Rightarrow -x < 0 \Rightarrow e^{-x} < e^0 = 1 \Rightarrow e^{-x} - 1 < 0 \Rightarrow 1 - e^{-x} > 0$ donc f est positive.

c.
$$f'(0) = 0 + 2(1-1) = 0$$
.

2. Comme
$$x \ge 1$$
 il faut calculer $-\int_{1}^{3} -(x-1)e^{-x} dx$: on pose
$$\begin{cases} u = x-1 \\ v' = e^{-x} \end{cases} \Rightarrow \begin{cases} u' = 1 \\ v = -e^{-x} \end{cases}$$
 d'où

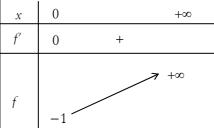
$$\int_{1}^{3} (x-1)e^{-x} dx = \left[-(x-1)e^{-x} \right]_{1}^{3} - \int_{1}^{3} -e^{-x} dx = -2e^{-3} - \left[e^{-x} \right]_{1}^{3} = -2e^{-3} - \left[e^{-3} - e^{-1} \right] = e^{-1} - 3e^{-3}.$$

Comme l'unité d'aire est de 2 cm x 2 cm, soit 4 cm², on a donc $\left(e^{-1} - 3e^{-3}\right)$ 4 \approx 0,87 cm².

3. a. La tangente à C est parallèle à Δ lorsque f'(x) = 2: mêmes coefficients directeurs; on a donc $f'(x) = xe^{-x} + 2 - 2e^{-x} = 2 \Leftrightarrow xe^{-x} - 2e^{-x} = 0 \Leftrightarrow (x-2)e^{-x} = 0 \Rightarrow x = 2$. Le point A a pour coordonnées A et A et A et A is a pour coordonnées A et A et A et A is a pour coordonnées A et A

b. La distance du point A à la droite ax + by + c = 0 est $\frac{\left|ax_A + by_A + c\right|}{\sqrt{a^2 + b^2}}$; ici Δ a pour équation cartésienne 2x - y - 2 = 0

d'où notre distance est $\frac{\left|2.2 - (2 - e^{-2}) - 2\right|}{\sqrt{2^2 + (-1)^2}} = \frac{e^{-2}}{\sqrt{5}}$, soit en cm :



$$2\frac{e^{-2}}{\sqrt{5}}.$$

1. 8. Basique, N. Calédonie, nov 2004

5 points

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{x}{e^x - x}$. On note (C) sa courbe représentative dans le plan rapporté au repère orthogonal $(O; \vec{i}, \vec{j})$, l'unité graphique est 2 cm sur l'axe des abscisses et 5 cm sur l'axe des ordonnées.

<u>Partie A</u>

Soit *g* la fonction définie sur \mathbb{R} par $g(x) = e^x - x - 1$.

- 1. Etudier les variations de la fonction g sur \mathbb{R} . En déduire le signe de g.
- 2. Justifier que pour tout x, $e^x x > 0$.

Partie B

- 1. a. Calculer les limites de la fonction f en $+\infty$ et $-\infty$.
- b. Interpréter graphiquement les résultats obtenus.
- 2. a. Calculer f'(x), f' désignant la fonction dérivée de f.
- b. Etudier le sens de variation de f puis dresser son tableau de variation.
- 3. a. Déterminer une équation de la tangente (T) à la courbe (C) au point d'abscisse 0.
- b. A l'aide de la partie A, étudier la position de la courbe (C) par rapport à la droite (T).
- 4. Tracer la droite (T), les asymptotes et la courbe (C).

Correction

Partie A

1. $g'(x) = e^x - 1$ est positive lorsque $x \ge 0$; g(0) = 1 - 0 - 1 = 0: comme g est décroissante avant 0 et croissante après, g est toujours positive.

2. Comme $g(x) \ge 0$, on a $e^x - x \ge 1 \Rightarrow e^x - x > 0$ (ceci montre que f est définie sur \mathbb{R}).

Partie B

1. a.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{e^x - x} = \lim_{x \to +\infty} \frac{1}{\frac{e^x}{x} - 1} = \frac{1}{+\infty} = 0$$
; $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{e^x - x} = \lim_{x \to -\infty} \frac{1}{\frac{e^x}{x} - 1} = \frac{1}{0 - 1} = -1$.

b. On a une asymptote horizontale en $-\infty$: y = -1 et une autre en $+\infty$: y = 0.

2. a.
$$f'(x) = \frac{1(e^x - x) - x(e^x - 1)}{(e^x - x)^2} = \frac{e^x - x - xe^x + x}{(e^x - x)^2} = \frac{(1 - x)e^x}{(e^x - x)^2}$$
.

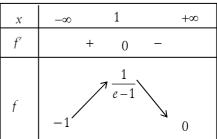
b. f est du signe de 1-x.

3. a.
$$y - f(0) = f'(0)(x - 0) \iff y = x$$
.

b.
$$f(x) - x = \frac{x}{e^x - x} - x = \frac{x - xe^x + x^2}{e^x - x} = \frac{-x(e^x - x - 1)}{e^x - x} = \frac{-xg(x)}{e^x - x}$$
.

Comme g est positive, ainsi que $e^x - x$, f(x) - x est du signe de -x, soit positif avant 0 (C est au-dessus de T), négatif après (C est en dessous de T).

4.





1. 9. Basiques

Exercice 1

Soient f et g les fonctions définies de]0; $+\infty[$ dans \mathbb{R} par :

$$f(x) = 2x + \frac{1}{2} \cdot \frac{e^x + 1}{e^x - 1}$$
 et $g(x) = 2e^{2x} - 5e^x + 2$.

a. Démontrer que
$$f(x) = 2x + \frac{1}{2} + \frac{1}{e^x - 1} = 2x - \frac{1}{2} + \frac{e^x}{e^x - 1}$$

- b. Factoriser g(x).
- c. Déterminer le signe de la dérivée de f.

Correction

a.
$$2x + \frac{1}{2} + \frac{1}{e^x - 1} = 2x + \frac{e^x - 1 + 2}{2(e^x - 1)} = 2x + \frac{1}{2} \cdot \frac{e^x + 1}{e^x - 1} = f(x)$$

$$2x - \frac{1}{2} + \frac{e^x}{e^x - 1} = 2 + \frac{-e^x + 1 + 2e^x}{2(e^x - 1)} = 2x + \frac{1}{2} \cdot \frac{e^x + 1}{e^x - 1} = f(x) ;$$

b.
$$g(x) = 2e^{2x} - 5e^x + 2$$
, $X = e^x$, $\Delta = 5^2 - 4 \times 2 \times 2 = 25 - 16 = 9 = 3^2$, $X = \frac{5 \pm 3}{4}$, $X_1 = e^{x_1} = 2$, $X_2 = e^{x_2} = \frac{1}{2}$,

$$g(x) = 2(e^x - 2)(e^x - \frac{1}{2}).$$

c.
$$f(x) = 2x + \frac{1}{2} + \frac{1}{e^x - 1}$$
, $f'(x) = 2 - \frac{e^x}{(e^x - 1)^2} = \frac{2(e^x - 1)^2 - e^x}{(e^x - 1)^2} = \frac{2(e^{2x} - 2e^x + 1) - e^x}{(e^x - 1)^2} = \frac{2e^{2x} - 5e^x + 2}{(e^x - 1)^2} = \frac{g(x)}{(e^x - 1)^2}$

est donc du signe de g(x) et f est donc négative entre ln 2 et $-\ln 2$, positive ailleurs.

Exercice 2

Démontrer que quel que soit le réel x on a : $\ln(e^x + 1) - \ln(1 + e^{-x}) = x$

Correction

$$\ln(e^x + 1) - \ln(1 + e^{-x}) = x \Leftrightarrow \ln\frac{e^x + 1}{1 + e^{-x}} = x \Leftrightarrow \frac{e^x + 1}{1 + e^{-x}} = e^x \Leftrightarrow e^x + 1 = e^x (1 + e^{-x}) \Leftrightarrow e^x + 1 = e^x + 1$$

Exercice 3

Résoudre les systèmes :

a.
$$\begin{cases} 2^{x} - 3^{y} = 5 \\ 3 \times 2^{x} + 3^{y} = 24 \end{cases}$$
 b.
$$\begin{cases} \ln x + \ln y = -2 \ln 4 \\ e^{x} e^{y} = \frac{1}{\sqrt{e}} \end{cases}$$

Correction

$$\begin{cases} 2^x - 3^y = -1 \\ 3 \times 2^x + 3^y = 33 \end{cases} \Rightarrow 4 \times 2^x = 32, 2^x = 8, x = 3, \begin{cases} x = 3 \\ 8 - 3^y = -1 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ 3^y = 9 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = 2 \end{cases}, S = \{(3; 2)\}.$$

$$\begin{cases} \ln x + \ln y = -2 \ln 4 \\ e^x \cdot e^y = \frac{1}{\sqrt{e}} \end{cases} \Leftrightarrow \begin{cases} \ln xy = \ln 4^{-2} \\ e^{x+y} = e^{-\frac{1}{2}} \end{cases}, \text{ soit } \begin{cases} xy = \frac{1}{16} \\ x+y = -\frac{1}{2} \end{cases}$$

Soit à résoudre l'équation :
$$X^2 - SX + P = 0$$
, $X^2 + \frac{1}{2}X + \frac{1}{16} = 0 \Leftrightarrow (X + \frac{1}{4})^2 = 0 \Leftrightarrow X = -\frac{1}{4} = x = y$.

Or, bien évidemment, les valeurs négatives sont exclues car ln n'est pas définie sur \mathbb{R}_- donc $\mathbb{S} = \emptyset$.

1. 10. Une fonction

On considère la fonction g définie sur \mathbb{R} par $g(x) = (x+1)^2 e^{-x}$.

Soit C la représentation graphique de la fonction g dans le repère orthonormal $(0; \vec{i}, \vec{j})$, unité graphique 2 cm.

- 1. Calculer la dérivée g' de g. Montrer que g'(x) est du signe de $(1-x^2)$. En déduire les variations de g.
- 2. Montrer que:
- a. $\lim_{x \to -\infty} g(x) = +\infty$.
- b. $\lim_{x \to +\infty} g(x) = 0$ et préciser l'asymptote à C correspondante.
- 3. Tracer la courbe C dans le repère $(O; \vec{i}, \vec{j})$. On placera en particulier les points de la courbe d'abscisses respectives -2; -1; 0; 1 et 3.
- 4. a. Par une lecture graphique, indiquer, suivant les valeurs du nombre réel k, le nombre de solutions de l'équation g(x) = k.
- b. Prouver rigoureusement que l'équation g(x) = 2 admet une solution α et une seule. Prouver que α appartient à l'intervalle [-2; -1].
- c. Montrer que α vérifie la relation $\alpha = -1 \sqrt{2}e^{\frac{\alpha}{2}}$.

Correction

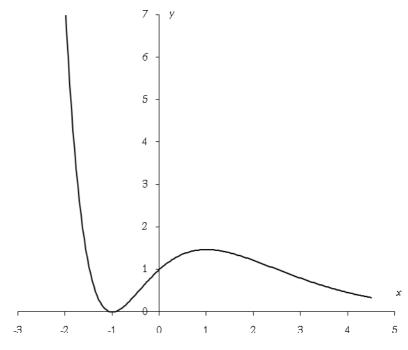
$$g(x) = (x+1)^2 e^{-x}$$
.

1.
$$g'(x) = 2(x+1)e^{-x} + (x+1)^2(-e^{-x}) = (x+1)e^{-x}(2-x-1) = (x+1)(1-x)e^{-x}$$
.

2. a.
$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} x^2 e^{-x} = \lim_{x \to +\infty} X^2 e^{X} = +\infty$$
.

b.
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^2 e^{-x} = \lim_{x \to -\infty} X^2 e^X = 0$$
.

C a une asymptote horizontale en $+\infty$.



4. a. Si k < 0, pas de solutions ; si k = 0, une seule solution : x = -1, si 0 < k < 4/e, 3 solutions, si k = 4/e : deux solutions dont x = 1, enfin si k > 4/e, une seule solution.

b. Si x > -1, f(x) est toujours inférieur ou égal à 4/e (<2), donc f(x) = 2 n'a pas de solution sur $[1; +\infty[$. Lorsque x < -1, f est continue monotone strictement croissante de $]-\infty; -1[$ vers $]0; +\infty[$. Comme 2 est dans cet intervalle, il existe une seule valeur de x pour laquelle f(x) = 2.

Claculons f(-2)=7,39 et f(-1)=0; comme 0 < 2 < 7,39 on a $-2 < \alpha < -1$.

c. Nous savons que
$$f(\alpha) = 2 \Leftrightarrow (\alpha + 1)^2 e^{-\alpha} = 2 \Leftrightarrow (\alpha + 1)^2 = 2e^{\alpha} \Leftrightarrow \begin{cases} \alpha + 1 = \sqrt{2e^{\alpha}} \\ \alpha + 1 = -\sqrt{2e^{\alpha}} \end{cases}$$
; comme $\alpha < -1$ on

choisit la racine négative, soit $\alpha = -1 - \sqrt{2}e^{\frac{\alpha}{2}}$.

1. 11. Un exercice standard

Soit f_k la famille de fonctions définies sur $[0, +\infty[$ par $f_k(x) = kx^2 + e^{-x}$ où k est un réel **strictement positif** quelconque et g_k la famille de fonctions également définies sur $[0, +\infty[$ par $g_k(x) = 2kx - e^{-x}$.

On note C_k la courbe représentative de f_k dans le repère orthonormal $(O; \vec{i}, \vec{j})$, unité graphique : 2 cm.

- 1. Sens de variation de g_k
- a. Calculer la dérivée g'_k de g_k ; vérifier que $g'_k(x)$ est toujours strictement positif.
- b. Calculer la limite de $g_k(x)$ quand x tend vers $+\infty$.
- c. Déduire de ce qui précède l'existence et l'unicité d'un nombre réel $\alpha_k > 0$ tel que $g_k(\alpha_k) = 0$. Donner une valeur approchée à 10^{-1} près de α_1 et de α_2 .
- d. Étudier le signe de $g_k(x)$ sur $[0, +\infty[$.
- e. Montrer que $f_k'(x) = g_k(x)$; en déduire le sens de variation de f_k .
- 2. Comportement asymptotique de f_k en $+\infty$
- a. Déterminer la limite de $f_k(x)$ en $+\infty$.
- b. Déterminer le signe de $f_k(x) kx^2$ et sa limite en $+\infty$. Interpréter graphiquement ce résultat ; on note P_k la courbe d'équation $y = kx^2$.
- 3. Construction de f_k .
- a. Dresser le tableau de variation de f_k . Préciser le signe de f_k .
- b. Préciser l'équation de la tangente T à C_k au point d'abscisse 0.
- c. Prouver que $f_k(\alpha_k) = k\alpha_k(\alpha_k + 2)$.
- d. On prend k=1: montrer que le point de coordonnées $(\alpha_1; f_1(\alpha_1))$ appartient à une parabole Q_1 dont on donnera l'équation. Tracer dans le même repère T, P_1 , Q_1 et C_1 .

Correction

$$f_k(x) = kx^2 + e^{-x}$$
, $g_k(x) = 2kx - e^{-x}$.

- 1. Sens de variation de g_{ν}
- a. $g'_k(x) = 2k + e^{-x}$ est toujours >0 puisque e^{-x} l'est ainsi que 2k.
- b. Comme e^{-x} tend vers 0 en $+\infty$ la fonction $g_k(x)$ se comporte comme 2kx et tend donc vers $+\infty$.
- c. On a $g_k(0) = 0 e^{-0} = -1$ qui est négatif et $\lim_{x \to +\infty} g_k(x) = +\infty$ qui est positif; comme g_k est continue, monotone strictement croissante elle s'annule une seule fois. Calculons des valeurs approchées de α_1 , solution de $2x e^{-x} = 0$: on a $0.351 < \alpha_1 < 0.352$.

X	$g_1(x)$
0,35172775	-1,612E-05
0,35183246	0,00026696

X	$g_2(x)$
0,20335079	-0,00258881
0,20418848	0,00144524

De même on obtient la solution de $4x - e^{-x} = 0$: 0,203 < α_2 < 0,205.

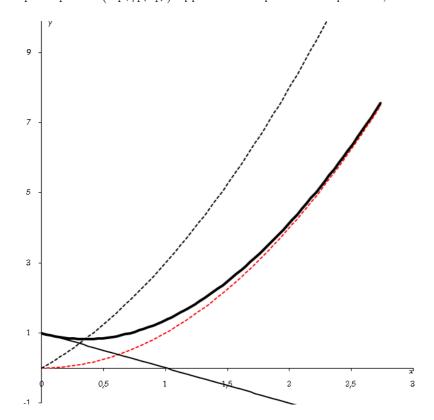
- d. Comme gk est croissante, on a $x < \alpha_k \Rightarrow g_k(x) < g_k(\alpha_k) = 0$ et $x > \alpha_k \Rightarrow g_k(x) > g_k(\alpha_k) = 0$
- e. Il est immédiat que $f_k'(x) = 2kx e^{-x} = g_k(x)$; f_k est donc décroissante avant α_k et croissante après.
- 2. Comportement asymptotique de f_k en $+\infty$
- a. Là encore e^{-x} tend vers 0 en $+\infty$ donc f_k se comporte comme kx^2 et tend donc vers $+\infty$.

Х	0		$\alpha_{\scriptscriptstyle k}$		+∞
$f_k{'}$		-	0	+	
f_k	1		$f_k(lpha_k)$		+∞ 1

- b. Comme $f_k(x) kx^2 = e^{-x}$, cette expression est positive et tend vers 0 à linfini. La courbe P_k est donc asymptote de C_k et C_k est au dessus de P_k .
- 3. Construction de f_k .
- a. Comme kx^2 est positif ainsi que e^{-x} , $f_k(x)$ est positive.
- b. On a $f_k'(0) = -1$ et $f_k(0) = 1$ d'où la tangente : y = -x + 1.
- c. $g_k(\alpha_k) = 0 \Leftrightarrow e^{-\alpha_k} = 2k\alpha_k$ donc

$$f_k(\alpha_k) = k\alpha_k^2 + 2k\alpha_k = k\alpha_k(\alpha_k + 2)$$
.

d. k = 1: $f_1(\alpha_1) = \alpha_1^2 + 2\alpha_1$ donc $(\alpha_1; f_1(\alpha_1))$ appartient à la parabole d'équation $y = x^2 + 2x$.



Vous pouvez changer la valeur de k et voir également ce que fait f_k lorsque k est négatif...

1. 12. Une suite de fonctions

Pour tout réel k strictement positif, on considère la fonction f_k définie sur $[0; +\infty[$ par $f_k(x) = \ln(e^x + kx) - x$. Soit C_k la courbe représentative de f_k dans un repère orthogonal $(O; \vec{i}, \vec{j})$ (unités: 5 cm sur l'axe des abscisses, 10 cm sur celui des ordonnées).

Etude préliminaire

On considère la fonction g définie sur $[0; +\infty[$ par $g(x) = \ln(1+x) - x$.

- 1. Etudier le sens de variation de g.
- 2. En déduire que, pour tout réel a positif ou nul, $\ln(1+a) \le a$.

Partie A : étude de f_1

- 1. Calculer $f_1'(x)$ et en déduire le sens de variation de f_1 .
- 2. Montrer que, pour tout x de $\left[0; +\infty\right[, f_1(x) = \ln\left(1 + \frac{x}{e^x}\right)\right]$.
- 3. Dresser le tableau de variation de f_1 .

Partie B : étude et propriétés de f_k

- 1. Calculer $f_k'(x)$ et en déduire le sens de variation de f_k .
- 2. Montrer que, pour tout x de $\left[0; +\infty\right[, f_k(x) = \ln\left(1 + k\frac{x}{e^x}\right)$. En déduire la limite de f_k en $+\infty$.
- 3. a. Dresser le tableau de variation de f_k .
- b. Montrer que, pour tout réel x de $[0, +\infty[$, on a $f_k(x) \le \frac{k}{e}$.
- 4. Déterminer une équation de la tangente (T_k) au point d'abscisse 0 de C_k.
- 5. Soit p et m deux réels strictement positifs tels que p < m. Etudier la position relative de C_p et C_m .
- 6. Tracer les courbes C₁ et C₂ ainsi que leurs tangentes en 0.

Partie C: majoration d'une intégrale

Soit λ un réel strictement positif, on note $A(\lambda)$ l'aire, en unités d'aire, du domaine délimitée par l'axe des abscisses, la courbe C_k et les droites x=0 et $x=\lambda$.

- 1. Sans calculer $A(\lambda)$, montrer que $A(\lambda) \le k \int_0^{\lambda} xe^{-x} dx$.
- 2. Calculer, à l'aide d'une intégration par parties, l'intégrale $\int_0^{\lambda} xe^{-x} dx$.
- 3. On admet que $A(\lambda)$ admet une limite en $+\infty$. Montrer que $\lim_{\lambda \to \infty} A(\lambda) \le k$. Interpréter graphiquement ce résultat.

Correction

Etude préliminaire

- 1. $g(x) = \ln(1+x) x$ sur $[0; +\infty[: g'(x) = \frac{1}{1+x} 1 = \frac{1-x-1}{1+x} = \frac{-x}{1+x} < 0$ donc g est décroissante.
- 2. Comme $g(0) = \ln 1 0 = 0$ et que g est décroissante, on a $g(x) \le 0$, soit $\ln(1+x) \le x$.

Partie A : étude de $f_1(x) = \ln(e^x + x) - x$

- 1. $f_1'(x) = \frac{e^x + 1}{e^x + x} 1 = \frac{e^x + 1 e^x x}{e^x + x} = \frac{1 x}{e^x + x}$; le dénominateur est positif, le numérateur est positif lorsque $x \le 1$. Donc f est croissante sur [0; 1], décroissante sur $[1; +\infty]$.
- 2. Comme $x = \ln(e^x)$, on a $f_1(x) = \ln(e^x + x) \ln e^x = \ln\left(\frac{e^x + x}{e^x}\right) = \ln\left(1 + \frac{x}{e^x}\right)$. Lorsque x tend vers $+\infty$ $\frac{x}{e^x}$

tend vers 0 (croissances comparées) donc f_1 tend vers $\ln 1 = 0$.

Partie B : Propriétés des fonctions fk

- 1. $f_k'(x) = \frac{e^x + k}{e^x + kx} 1 = \frac{k kx}{e^x + kx} = \frac{k(1 x)}{e^x + kx}$; comme k est strictement positif, f_k a le même sens de variation que f_1 .
- x = 0 1 $+\infty$ $f_{k'}$ + 0 - $\ln(e+k)-1$ f_{k} 0
- 2. Avec le même calcul que précédemment $f_k(x) = \ln\left(1 + k\frac{x}{e^x}\right)$ qui tend vers 0 lorsque x tend vers $+\infty$.
- 3. a. Voir ci-contre.
- b. Comme on le voit sur le T. V. on a

$$f_k(x) \le f_k(1) = \ln(e+k) - 1 = \ln(e+k) - \ln e = \ln\left(\frac{e+k}{e}\right) = \ln\left(1 + \frac{k}{e}\right);$$

utilisons l'inégalité $\ln(1+x) \le x$ avec $x = \frac{k}{e}$, on a $\ln\left(1 + \frac{k}{e}\right) \le \frac{k}{e}$ d'où $f_k(x) \le \frac{k}{e}$.

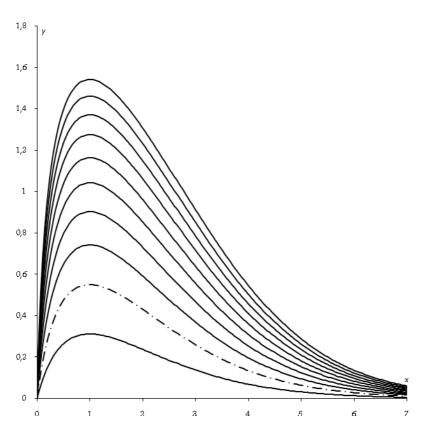
- 4. En O, $f_k(0) = \ln 1 = 0$ et $f'_k(0) = \frac{k}{1} = k$ d'où l'équation de la tangente : y = k(x-0) + 0 = kx.
- 5. Calculons $f_m(x) f_p(x) = \ln(e^x + mx) x \ln(e^x + px) + x = \ln(e^x + mx) \ln(e^x + px)$. Cette expression est positive lorsque $e^x + mx > e^x + px \Leftrightarrow m > p$. Donc dans le cas présent C_p est en dessous de C_m . 6. A la fin.

Partie C

- 1. Comme on doit calculer $A(\lambda) = \int_0^{\lambda} f_k(x) dx = \int_0^{\lambda} \ln(e^x + kx) x dx = \int_0^{\lambda} \ln\left(1 + \frac{kx}{e^x}\right) dx$, chose à priori impossible, on majore f_k par $\ln\left(1 + \frac{kx}{e^x}\right) \le \frac{kx}{e^x} = kxe^{-x}$ d'où $A(\lambda) \le \int_0^{\lambda} kxe^{-x} dx = k \int_0^{\lambda} xe^{-x} dx$.
- 2. On intègre par parties avec u = x, u' = 1 et $v' = e^{-x}$, $v = -e^{-x}$, soit

$$\int_{0}^{\lambda} x e^{-x} dx = \left[-x e^{-x} \right]_{0}^{\lambda} - \int_{0}^{\lambda} -e^{-x} dx = -\lambda e^{-\lambda} - 0 + \left[-e^{-x} \right]_{0}^{\lambda} = -\lambda e^{-\lambda} - e^{-\lambda} + 1 = I(\lambda).$$

3. La limite de $I(\lambda)$ est assez évidente : $\lambda e^{-\lambda}$ tend vers 0 lorsque λ tend vers $+\infty$, $I(\lambda)$ tend donc vers 1. Par conséquent comme $A(\lambda) \le kI(\lambda)$, on a à la limite $A(\lambda) \le k$.



Sur la figure la courbe la plus basse correspond à k = 1, la plus haute à k = 10.

1. 13. ln et exp

D'après Paris, Bac C, 1974

Soit f la fonction numérique définie sur \mathbb{R} par :

$$f(x) = \ln(e^{2x} - e^x + 1)$$

le symbole *In* désignant le logarithme népérien.

- 1. Montrer que $e^{2x} e^x + 1$ est strictement positif pour tout réel x. Étudier les variations de la fonction f. Soit (C) la courbe représentative, dans un repère orthonormé, de la fonction f.
- 2. Préciser les limites de f en $+\infty$ et $-\infty$
- 3. Vérifier que $f(x) 2x = \ln(1 e^{-x} + e^{-2x})$ et montrer que f(x) 2x tend vers une limite lorsque x tend vers $+\infty$. En déduire l'asymptote correspondante de (C).
- 4. Construire la courbe (C) (on précisera la tangente au point de (C) d'ordonnée nulle).
- 5. Déterminer, en utilisant la courbe (C), le nombre de solutions réelles de l'équation d'inconnue x :

$$e^{2x} - e^x + 1 = \frac{7}{8}$$

a. par le calcul,

b. en utilisant la courbe (C).

Correction

1. $e^{2x} - e^x + 1 = X^2 - X + 1$ en posant $X = e^x$. On a alors $\Delta = -3 < 0$ donc le trinômes est positif ainsi que $e^{2x} - e^x + 1$.

 $f'(x) = \frac{2e^{2x} - e^x}{e^{2x} - e^x + 1} = \frac{e^x (2e^x - 1)}{e^{2x} - e^x + 1} \quad \text{donc} \quad f' \quad \text{est} \quad \text{du signe} \quad \text{de} \quad 2e^x - 1 \,. \quad \text{Ce terme est positif lorsque}$ $e^x > \frac{1}{2} \Leftrightarrow x > \ln \frac{1}{2} \Leftrightarrow x > -\ln 2 \,. \text{ Par ailleurs } f(-\ln 2) = \ln \left(e^{-2\ln 2} - e^{-\ln 2} + 1 \right) = \ln \left(\frac{1}{4} - \frac{1}{2} + 1 \right) = \ln \frac{3}{4} \,.$

2. En $-\infty$ c'est facile car e^{2x} et e^x tendent vers 0. On a donc f qui tend vers $\ln 1 = 0$.

En $+\infty$ $e^{2x} - e^x + 1$ se comporte comme e^{2x} et tend donc vers $+\infty$.

3.
$$f(x) - 2x = \ln(e^{2x} - e^x + 1) - \ln(e^{2x}) = \ln\left(\frac{e^{2x} - e^x + 1}{e^{2x}}\right) = \ln[(e^{2x} - e^x + 1)e^{-2x}] = \ln(1 - e^{-x} + e^{-2x})$$
.

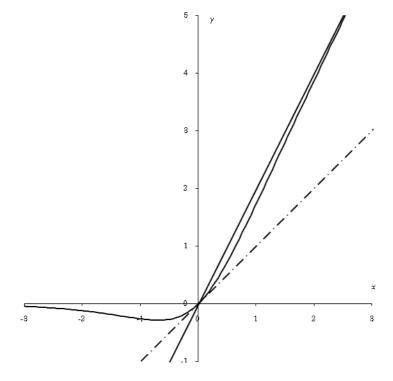
Les termes e^{-2x} et e^{-x} tendent vers 0 à l'infini, donc f(x)-2x tend vers $\ln 1=0$. La droite y=2x est donc asymptote de (C).

4. La tangente en 0 est (y = x). Figure à la fin.

5. L'équation $e^{2x} - e^x + 1 = \frac{7}{8}$ est équivalente à $f(x) = \ln(7/8)$. Comme $\frac{3}{4} < \frac{7}{8} < 1$, on a $\ln \frac{3}{4} < \ln \frac{7}{8} < 0$, il y a donc deux solutions.

Par le calcul on pose $X=e^x$, ce qui donne l'équation $X^2-X+1-\frac{7}{8}=0 \Leftrightarrow X^2-X+\frac{1}{8}=0$, $\Delta=1-\frac{1}{2}=\frac{$

$$\text{d'où les racines} \ \ X_1 = \frac{1}{2} + \frac{1}{2\sqrt{2}} \Rightarrow x_1 = \ln\left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right) \ \text{et} \ \ X_2 = \frac{1}{2} - \frac{1}{2\sqrt{2}} > 0 \Rightarrow x_1 = \ln\left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right).$$



X	_∞ —ln2	+∞
f'	- 0 +	
f	0 ln(3/4)	+∞

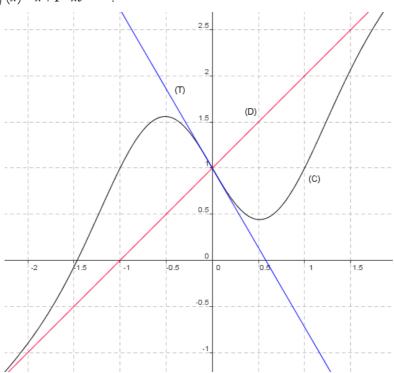
1. 14. Recherche de fonction

Sur la feuille ci-jointe, figurent la courbe représentative (C) dans le repère orthonormé $(O; \vec{i}, \vec{j})$ d'une fonction f définie et dérivable sur $\mathbb R$ ainsi que son asymptote (D) et sa tangente (T) au point d'abscisse O. On sait que le point J(0; 1) est le centre de symétrie de la courbe (C), que l'asymptote (D) passe par les points K(-1; 0) et J et que la tangente (T) a pour équation y = (1 - e)x + 1.

- 1. Déterminer une équation de (D).
- 2. On suppose qu'il existe deux réels m et p et une fonction φ définie sur \mathbb{R} telle que, pour tout réel x,

$$f(x) = mx + p + \varphi(x)$$
 avec $\lim_{x \to +\infty} \varphi(x) = 0$.

- a. Démontrer que m = p = 1.
- b. En utilisant le point J, montrer que, pour tout réel x, on a f(x) + f(-x) = 2.
- c. En déduire, après avoir exprimé f(x) et f(-x), que la fonction φ est impaire.
- d. Déduire de la question b. que f', dérivée de f, est paire.
- 3. On suppose maintenant que, pour tout réel x, $\varphi(x) = (ax + b)e^{-x^2}$ où a et b sont des réels.
- a. En utilisant la parité de φ , démontrer que b=0.
- b. Calculer f'(x).
- c. En utilisant le coefficient directeur de (T), démontrer que a=-e.
- d. Démontrer que $f(x) = x + 1 xe^{-x^2 + 1}$.



Correction

- 1. La droite (D) passe par les points J(0; 1) et K(-1; 0), une équation est donc y = x + 1.
- 2. a. $\lim_{x\to +\infty} \varphi(x) = 0 \Leftrightarrow \lim_{x\to +\infty} f(x) (mx + p) = 0$, c'est-à-dire que la droite d'équation y = mx + p est asymptote à la courbe en $+\infty$, c'est la droite (D). Donc m = p = 1.

b. Le point J est centre de symétrie de la courbe, on a donc la relation :

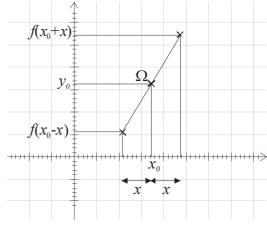
$$f(x_I + x) - y_I = y_I - f(x_I - x)$$
, ou encore:

$$\frac{f(x_J + x) + f(x_J - x)}{2} = y_J$$

En remplaçant par les coordonnées de J, on obtient :

$$f(0 + x) - 1 = 1 - f(0 - x)$$

ou encore f(x) + f(-x) = 2.



c.
$$f(x) = x + 1 + \varphi(x)$$
, $f(-x) = -x + 1 + \varphi(-x)$ donc $f(x) + f(-x) = 2 + \varphi(x) + \varphi(-x)$.

Or, on sait que f(x) + f(-x) = 2, on en déduit que $\varphi(x) + \varphi(-x) = 0$, ou encore que $\varphi(x) = -\varphi(-x)$, c'està-dire que la fonction φ est impaire.

d. f(x) + f(-x) = 2, donc, en dérivant chaque terme : f'(x) - f'(-x) = 0, soit f'(x) = f'(-x). Conclusion f' est paire. Attention, la dérivée de f(-x) est -f'(-x) (dérivation des fonctions composées).

2. a.
$$\varphi(x) = (ax + b)e^{-x^2} \Rightarrow \varphi(-x) = (-ax + b)e^{-x^2}$$
; comme φ est impaire, on a $ax + b = -ax + b$, soit $b = 0$.

b.
$$f(x) = x + 1 + \varphi(x) = x + 1 + axe^{-x^2} \implies f'(x) = 1 + \varphi'(x) = 1 + ae^{-x^2} + (ax)(-2x)e^{-x^2} = 1 + a(1 - 2x^2)e^{-x^2}$$
.

c. Le coefficient directeur de la tangente au point d'abscisse 0, soit J, est f'(0) = (1 - e) (équation de (T)). On a donc l'égalité : $f'(0) = 1 + a = 1 - e \Rightarrow a = -e$.

d. Il reste à conclure :
$$f(x) = x + 1 + axe^{-x^2} = x + 1 - exe^{-x^2}$$
.

1. 15. Etude de fonction hyperbolique

Soit f l'application de]0; $+\infty[$ dans \mathbb{R} définie par $f(x) = 2x + \frac{1}{2} \frac{e^x + 1}{e^x - 1}$, et g l'application de \mathbb{R} dans \mathbb{R} définie par $g(x) = 2e^{2x} - 5e^x + 2$.

Partie A

- 1. Montrer que, pour tout *x* de]0; $+\infty[$, on a $f(x) = 2x + \frac{1}{2} + \frac{1}{e^x 1}$.
- 2. Montrer que pour tout x de]0; $+\infty[$ on a $f(x) = 2x \frac{1}{2} + \frac{e^x}{e^x 1}$.
- 3. Résoudre l'équation g(x) = 0 puis factoriser g(x).

Partie B : Etude de f

- 1. Calculer les limites de f en 0 et en $+\infty$.
- 2. a. Montrer que la droite (D) d'équation $y = 2x + \frac{1}{2}$ est asymptote à la courbe (C) représentative de f.
- b. Etudier la position de (C) par rapport à (D).
- 3. Montrer que la fonction dérivée de f est du signe de la fonction g de la partie A et dresser le tableau de variation de f.
- 4. Réprésenter (C) et ses asymptotes dans un repère orthonormal (unité graphique : 1 cm)
- 5. a. Etudier graphiquement suivant les valeurs du nombre réel m, l'intersection de (C) et de la droite (D_m) d'équation y = 2x + m.
- b. Démontrer par le calcul ces résultats (on pourra utiliser le A.1.).

Partie C: Calcul d'aire

- 1. En reconnaissant la forme $\frac{u'(x)}{u(x)}$, déterminer les primitives sur]0; $+\infty[$ de la fonction $x\mapsto \frac{e^x}{e^x-1}$.
- 2. En déduire, en utilisant A.2., les primitives sur]0; $+\infty$ [de $f(x)-(2x+\frac{1}{2})$.
- 3. Calculer l'aire du domaine plan limité par (C), (D) et les droites d'équation $x = \ln 2$ et $x = \ln 4$.

Correction

 $\underline{Partie\ A}: Il\ suffit\ de\ {\it ``apartir\ de\ l'expression}\ de\ droite\ {\it ``apartir\ B}:$

1. Pour x > 0, $e^x > 1$ donc $\lim_{\substack{x \to 0 \\ x > 0}} e^x - 1 = 0$; comme $\lim_{\substack{x \to 0 \\ x > 0}} e^x + 1 = 2$ on en déduit que $\lim_{\substack{x \to 0 \\ x > 0}} \frac{e^x + 1}{e^x - 1} = +\infty$ et comme

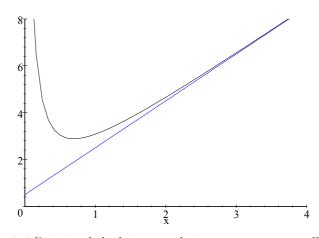
2x tend vers 0, f tend vers $+\infty$ en 0^+ . En $+\infty$ numérateur et dénominateur sont équivalents à e^x donc le quotient tend vers 1 et f tend vers $+\infty$ en se comportant comme $2x + \frac{1}{2} \cdot 1 = 2x + \frac{1}{2}$.

- 2. a. $f(x) \left(2x + \frac{1}{2}\right) = \frac{1}{e^x 1}$ tend évidemment vers 0 à l'infini donc asymptote.
- b. $e^x 1 > 0 \Leftrightarrow x > 0$ donc (C) est au-dessus de (D).
- 3. f est la somme de deux fonctions dérivables et est donc dérivable. On dérive à partir de $f(x) = 2x + \frac{1}{2} + \frac{1}{e^x 1}$: $f'(x) = 2 + \frac{-e^x}{(e^x 1)^2} = \frac{2e^{2x} 4e^x + 2 e^x}{(e^x 1)^2} = \frac{2e^{2x} 3e^x + 2}{(e^x 1)^2} = \frac{g(x)}{(e^x 1)^2}$.

f' est donc du signe de $(e^x-2)(2e^x-1)$, or $e^x-2>0 \Leftrightarrow x>\ln 2$ et $2e^x-1>0 \Leftrightarrow x>\ln 1/2=-\ln 2$.

X	0		ln2		$+\infty$
$e^x - 2$		_	0	+	
$2e^{x} - 1$		+		+	
f'		_		+	
f	+∞		f(ln2)	/	+∞

4. (C) admet deux asymptotes : la droite d'équation (x=0) et la droite (D).



5. a. m représente l'ordonnée à l'origine de la droite, ces droites sont toutes parallèles.

Si $m < \frac{1}{2}$, la droite (D_m) est parallèle à (D) et située sous (D) donc elle ne coupe pas (C); si $m = \frac{1}{2}$ on voit que (D) ne coupe pas (C), c'est l'asymptote ; si $m > \frac{1}{2}$, il semble que la droite (D_m) coupe (C) en un seul point.

b.
$$M(x,y) \in (D_m) \cap (C) \Leftrightarrow 2x + \frac{1}{2} + \frac{1}{e^x - 1} = 2x + m \Leftrightarrow \frac{1}{e^x - 1} = m - \frac{1}{2} \Leftrightarrow e^x - 1 = \frac{2}{2m - 1} \Leftrightarrow e^x = \frac{2m + 1}{2m - 1}$$

Donc il faut $\frac{2m+1}{2m-1} > 0 \Leftrightarrow m \in \left[-\infty; -\frac{1}{2}\right] \cup \left[+\frac{1}{2}; +\infty\right]$ et comme *x* doit être positif :

$$x = \ln\left(\frac{2m+1}{2m-1}\right) > 0 \Leftrightarrow \frac{2m+1}{2m-1} > 1 \Leftrightarrow \frac{2m+1-2m+1}{2m-1} > 0 \Leftrightarrow m > \frac{1}{2}.$$

Partie C

1.
$$\int \frac{e^x}{e^x - 1} dx = \ln(e^x - 1) + K \text{ car } e^x - 1 > 0.$$

2.
$$f(x) - \left(2x + \frac{1}{2}\right) = \frac{e^x}{e^x - 1} - 1 \Rightarrow \int f(x) - \left(2x + \frac{1}{2}\right) dx = \ln(e^x - 1) - x + K'$$

3. Comme (C) est au-dessus de (D), l'aire cherchée vaut

$$\int_{\ln 2}^{\ln 4} f(x) - \left(2x + \frac{1}{2}\right) dx = \left[\ln(e^x - 1) - x\right]_{\ln 2}^{\ln 4} = \ln 3 - \ln 4 - \ln 1 + \ln 2 = \ln 3 - \ln 2.$$

- 1. 16. Une intégrale peu engageante...
- 1. On considère la fonction numérique f définie sur $[1; +\infty[$ par $f(x) = \frac{1}{x} \exp\left(\frac{1}{x}\right)$.

On note C la courbe représentative de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$ du plan.

Pour tout réel $\alpha \ge 1$, on considère les intégrales

$$J(\alpha) = \int_{\alpha}^{2\alpha} \frac{1}{x} dx \text{ et } K(\alpha) = \int_{\alpha}^{2\alpha} \frac{1}{x} \exp\left(\frac{1}{x}\right) dx.$$

Le but de l'exercice est d'étudier, sans chercher à la calculer, l'intégrale $K(\alpha)$.

- a. Déterminer la limite de f en $+\infty$. Interpréter graphiquement le résultat.
- b. Montrer que la dérivée de f peut s'écrire $f'(x) = -\frac{1}{x^2} \left(\frac{x+1}{x} \right) \exp \left(\frac{1}{x} \right)$. En déduire le sens de variation de f.
- c. Donner l'allure de la courbe C.
- 2. a. Interpréter géométriquement le nombre $K(\alpha)$.
- b. Soit $\alpha \ge 1$, montrer que $\frac{1}{2} \exp\left(\frac{1}{2\alpha}\right) \le K(\alpha) \le \exp\left(\frac{1}{\alpha}\right)$.
- c. En déduire que $\frac{1}{2} \le K(\alpha) \le e$.
- 3. a. Calculer $J(\alpha)$.
- b. Démontrer que pour tout réel $\alpha \ge 1$, $\exp\left(\frac{1}{2\alpha}\right)\ln(2) \le K(\alpha) \le \exp\left(\frac{1}{\alpha}\right)\ln(2)$.
- 4. Démonstration de cours. Démontrer le théorème suivant :

Soient u, v et w des fonctions définies sur $[1; +\infty[$ telles que pour tout réel $x \ge 1, u(x) \le v(x) \le w(x)$.

S'il existe un réel l tel que $\lim_{x \to +\infty} u(x) = l$ et $\lim_{x \to +\infty} w(x) = l$ alors $\lim_{x \to +\infty} v(x) = l$.

5. Déduire de ce qui précède la limite de $K(\alpha)$ lorsque α tend vers $+\infty$.

Correction

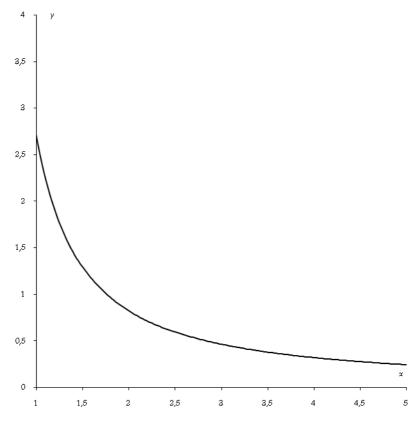
1.
$$[1; +\infty[, f(x) = \frac{1}{x} \exp\left(\frac{1}{x}\right)]$$
. $\alpha \ge 1$, $J(\alpha) = \int_{\alpha}^{2\alpha} \frac{1}{x} dx$ et $K(\alpha) = \int_{\alpha}^{2\alpha} \frac{1}{x} \exp\left(\frac{1}{x}\right) dx$.

a. En $+\infty$ 1/x tend vers 0 donc f tend vers 0.e⁰ = 0. L'axe horizontal est une asymptote de (C).

b.
$$f'(x) = \left(-\frac{1}{x^2}\right) \exp\left(\frac{1}{x}\right) + \frac{1}{x} \left[\left(-\frac{1}{x^2}\right) \exp\left(\frac{1}{x}\right)\right] = \left(-\frac{1}{x^2}\right) \exp\left(\frac{1}{x}\right) \left[1 + \frac{1}{x}\right] = \left(-\frac{1}{x^2}\right) \left[\frac{x+1}{x}\right] \exp\left(\frac{1}{x}\right)$$
.

Comme x est supérieur à 1, f' est toujours négative et f est décroissante.

C.



2. a. $K(\alpha) = \int_{\alpha}^{2\alpha} \frac{1}{x} \exp\left(\frac{1}{x}\right) dx$ correspond à l'aire comprise entre la courbe (C) l'axe (Ox) et les droites $x = \alpha$, $x = 2\alpha$.

b. Sur l'intervalle [$\alpha, 2\alpha$], f est décroissante et on a

$$1 \le \alpha \le x \le 2\alpha \Rightarrow \begin{cases} \frac{1}{2\alpha} \le \frac{1}{x} \le \frac{1}{\alpha} \le 1\\ f(2\alpha) = \frac{1}{2\alpha} \exp\left(\frac{1}{2\alpha}\right) \le f(x) \le f(\alpha) = \frac{1}{\alpha} \exp\left(\frac{1}{\alpha}\right). \end{cases}$$

Intégrons cette inégalité : $\int_{\alpha}^{2\alpha} \frac{1}{2\alpha} \exp\left(\frac{1}{2\alpha}\right) dx \le K(\alpha) \le \int_{\alpha}^{2\alpha} \frac{1}{\alpha} \exp\left(\frac{1}{\alpha}\right) dx$. Or on a

$$\int_{\alpha}^{2\alpha} \frac{1}{2\alpha} \exp\left(\frac{1}{2\alpha}\right) dx = \left(2\alpha - \alpha\right) \frac{1}{2\alpha} \exp\left(\frac{1}{2\alpha}\right) = \frac{1}{2} \exp\left(\frac{1}{2\alpha}\right),$$

$$\int_{\alpha}^{2\alpha} \frac{1}{\alpha} \exp\left(\frac{1}{\alpha}\right) dx = \left(2\alpha - \alpha\right) \frac{1}{\alpha} \exp\left(\frac{1}{\alpha}\right) = \exp\left(\frac{1}{\alpha}\right)$$

d'où
$$\frac{1}{2} \exp\left(\frac{1}{2\alpha}\right) \le K(\alpha) \le \exp\left(\frac{1}{\alpha}\right)$$
.

c. Comme
$$0 \le \frac{1}{2\alpha} \le \frac{1}{x} \le \frac{1}{\alpha} \le 1$$
, $\frac{1}{2} \exp(0) \le \frac{1}{2} \exp\left(\frac{1}{2\alpha}\right) \le K(\alpha) \le \exp\left(\frac{1}{\alpha}\right) \le \exp(1)$, soit $\frac{1}{2} \le K(\alpha) \le e$.

3. a.
$$J(\alpha) = \int_{\alpha}^{2\alpha} \frac{1}{x} dx = [\ln x]_{\alpha}^{2\alpha} = \ln 2\alpha - \ln \alpha = \ln \frac{2\alpha}{\alpha} = \ln 2$$
.

b. Comme on a
$$0 \le \frac{1}{2\alpha} \le \frac{1}{x} \le \frac{1}{\alpha} \le 1$$
, on a $1 \le \exp\left(\frac{1}{2\alpha}\right) \le \exp\left(\frac{1}{x}\right) \le \exp\left(\frac{1}{\alpha}\right) \le e$, soit en multipliant par

$$1/x: \frac{1}{x} \le \frac{1}{x} \exp\left(\frac{1}{2\alpha}\right) \le \frac{1}{x} \exp\left(\frac{1}{x}\right) \le \frac{1}{x} \exp\left(\frac{1}{\alpha}\right) \le \frac{1}{x}e$$
 puis en intégrant :

$$\ln 2 \le (\ln 2) \exp\left(\frac{1}{2\alpha}\right) \le K(\alpha) \le (\ln 2) \exp\left(\frac{1}{\alpha}\right) \le e \ln 2.$$

4. Démonstration de cours : il faut s'attendre à tout avec les méchants professeurs de maths...

5. Lorsque
$$\alpha$$
 tend vers $+\infty$, $\exp\left(\frac{1}{2\alpha}\right)$ et $\exp\left(\frac{1}{\alpha}\right)$ tendent vers $e^0 = 1$. La limite est donc ln2.

1. 17. Tangente hyperbolique

Dans tout le problème $(O; \vec{i}, \vec{j})$ est un repère orthonormé du plan P.

On note f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{-x}}{1 + e^{-x}}$. On appelle C la courbe représentative de f dans le repère $O(\vec{i}, \vec{j})$.

Partie A

- 1. Etude de *f*:
- a. Calculer les limites de f en $-\infty$ et $+\infty$. Justifier vos calculs.
- b. Préciser les équations des asymptotes.
- 2. Donner l'expression de f'(x) où f' est la dérivée de f. Dresser le tableau de variation de f. Préciser f(0).
- 3. Déterminer une équation de la tangente à C au point d'abscisse x=0; on note T_0 cette tangente.
- 4. Courbe:
- a. Soit x un réel quelconque. Calculer f(x) + f(-x).
- b. Quelle propriété de symétrie peut on déduire de la question précédente ?
- c. Tracer C, ses asymptotes et la tangente T_0 .

Partie B

- 1. a. Soit $u(x) = 1 + e^{-x}$. Calculer u'(x).
- b. En déduire la primitive F de f qui prend la valeur ln2 en x = 0.
- 2. a. On pose $A = \int_0^1 f(x)dx$. Calculer A.
- b. Déterminer le réel c tel que $A = \ln c$.
- 3. Pour tout entier naturel *n* non nul on pose $v_n = \int_{-\frac{1}{n}}^{\frac{1}{n}+\frac{1}{n}} f(x) dx$.
- a. Exprimer v_n en fonction de n.

b. Calculer $\lim_{n\to +\infty} v_n$.

Correction

Partie A

1. a. Remarquons de suite que $f(x) = \frac{e^{-x}}{1 + e^{-x}} = \frac{e^{-x}}{1 + e^{-x}} \frac{e^x}{e^x} = \frac{1}{e^x + 1}$ donc la limite en $+\infty$ est $\frac{1}{+\infty} = 0$ et la limite en $-\infty$ est $\frac{1}{0 + 1} = 1$.

b. Les asymptotes sont y=0 en $+\infty$ et y=1 en $-\infty$.

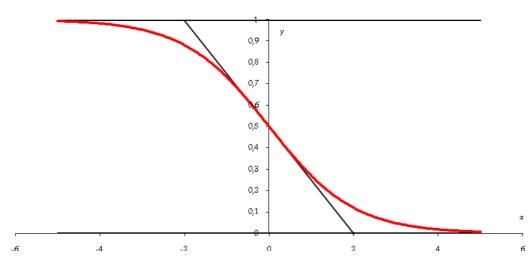
2.
$$f'(x) = -\frac{(e^x + 1)'}{(e^x + 1)^2} = -\frac{e^x}{(e^x + 1)^2}$$
 qui est évidemment strictement négative. $f(0) = \frac{1}{2}$.

3.
$$y = f'(0)(x-0) + f(0) = -\frac{1}{4}x + \frac{1}{2}$$
.

4. a.
$$f(x) + f(-x) = \frac{e^{-x}}{1 + e^{-x}} + \frac{e^{x}}{1 + e^{x}} = \frac{e^{-x} + 1 + e^{x} + 1}{(1 + e^{-x})(1 + e^{x})} = \frac{2 + e^{-x} + e^{x}}{1 + e^{-x} + e^{x} + 1} = 1$$
.

b. Le point de coordonnées $\left(0;\frac{1}{2}\right)$ est un centre de symétrie de C.

c.



Partie B

1. a.
$$u(x) = 1 + e^{-x}$$
. $u'(x) = -e^{-x}$.

b. On remarque que $f(x) = \frac{e^{-x}}{1 + e^{-x}} = \frac{-u'}{u}$ donc les primitives de f sont de la forme

$$F(x) = -\ln |u| + K = -\ln (1 + e^{-x}) + K$$
.

En 0, on a $F(0) - \ln 2 = -\ln (1+1) + K \Rightarrow K = 0$.

2. a. & b.
$$A = \int_0^1 f(x) dx = \left[-\ln\left(1 + e^{-x}\right) \right]_0^1 = -\ln\left(1 + e^{-1}\right) + \ln\left(1 + e^{0}\right) = \ln\frac{2}{1 + e^{-1}} = \ln\frac{2e}{e + 1}$$

3.
$$v_n = \int_{\frac{1}{n}}^{1+\frac{1}{n}} f(x) dx = -\ln\left(1 + e^{-1 - \frac{1}{n}}\right) + \ln\left(1 + e^{-\frac{1}{n}}\right) \xrightarrow[n \to +\infty]{} - \ln\left(1 + e^{-1 - 0}\right) + \ln\left(1 + e^{0}\right) = \ln\frac{2}{1 + e^{-1}} = A$$
.

On pouvait s'attendre au résultat car $\int_{-\frac{1}{n}}^{1+\frac{1}{n}} f(x)dx \xrightarrow[n \to +\infty]{} \int_{0}^{1} f(x)dx$.

1. 18. Tangente hyperbolique et primitives

A. Une fonction

Soit f la fonction définie sur \mathbb{R} par : $f(x) = 4 \frac{e^x}{e^x + 1}$

On désigne par C la courbe représentative de f dans un repère orthonormal ($O; \vec{i}, \vec{j}$)

(unité graphique : 2 cm)

- 1. Déterminer les limites de f en $-\infty$ et en $+\infty$. En déduire les droites asymptotes à C.
- 2. Etudier les variations de f et en dresser son tableau de variations.
- 3. Démontrer que le point d'intersection A de C et de l'axe des ordonnées est centre de symétrie pour C.
- 4. Donner une équation de la tangente à C en A.
- 5. Tracer sur un même graphique : C, sa tangente au point A, et ses droites asymptotes.

B. Sa dérivée

On considère la fonction f', dérivée de f. On note C' sa courbe dans $(O; \vec{i}, \vec{j})$.

- 1. En utilisant le fait que C admet le point A comme centre de symétrie, justifier que f'' est une fonction paire.
- 2. Déterminer les limites de f' en $-\infty$ et en $+\infty$. En déduire les droites asymptotes à C'.
- 3. Montrer que $f''(x) = 4 \frac{e^x e^{2x}}{(1 + e^x)^3}$; étudier les variations de f' et dresser son tableau de variations.
- 4. Tracer C' sur le même graphique que C.
- 5. Justifier la position de C' par rapport à C.

C. Une de ses primitives

- 1. a. Justifier que f admet des primitives sur $\mathbb R$.
- 1. b. Soit F, la primitive de f sur \mathbb{R} qui s'annule pour x=0, et soit Γ sa courbe représentative dans un repère orthonormal (O; \vec{u} , \vec{v}) (unité graphique : 2 cm).

Quel est le sens de variation de F ?

- 2. Expliciter F(x), pour tout x réel.
- 3. a. Déterminer les limites de F en $-\infty$ et en $+\infty$. En déduire une propriété de la courbe Γ .
- 3. b Démontrer que la droite Δ d'équation $y = 4x 4 \ln 2$ est asymptote à Γ .
- 4. Résumer les résultats précédents dans un tableau de variations.
- 5. Tracer Γ et ses asymptotes sur une autre feuille de papier millimétré.

Correction

A. La fonction *f*

1.
$$\frac{e^x}{e^x + 1} = \frac{1}{e^{-x} + 1}$$
, $\lim_{x \to +\infty} \frac{1}{e^{-x} + 1} = 1$, $\lim_{x \to +\infty} f(x) = 4$, $\lim_{x \to -\infty} e^x = 0 \Rightarrow \lim_{x \to -\infty} f(x) = 0$.

La courbe C admet donc deux asymptotes horizontales : la droite d'équation y=4 en $+\infty$ et la droite d'équation y=0 en $-\infty$.

2. $x \mapsto e^x$ est définie et dérivable sur \mathbb{R} ; $x \mapsto e^x + 1$ est définie et dérivable sur \mathbb{R} et n'est jamais nulle.

Donc
$$f$$
 est dérivable sur \mathbb{R} , et $f'(x) = 4 \frac{e^x(e^x + 1) - e^x \cdot e^x}{\left(e^x + 1\right)^2} = 4 \frac{e^x}{\left(e^x + 1\right)^2}$: $f'(x) > 0$ pour tout x réel, donc f

est strictement croissante sur $\mathbb R$.

Tableau de variations de f :

X	$-\infty$	$+\infty$
f'(x)	+	
f(x)	0	4

3. $x_A = 0$ et $y_A = f(0) = 2$: pour montrer que le point A est centre de symétrie de C, montrons que, pour tout x réel, * $x_A - x \in D_f$ et $x_A + x \in D_f$: vrai car $D_f = R$

$$f(x_A - x) + f(x_A + x) = 2y_A$$

$$f(-x) + f(x) = 4\frac{e^x}{e^x + 1} + 4\frac{e^{-x}}{e^{-x} + 1} = 4\left(\frac{e^x(e^{-x} + 1) + e^{-x}(e^x + 1)}{(e^x + 1)(e^{-x} + 1)}\right) = 4\frac{e^x + e^{-x} + 2}{e^x + e^{-x} + 2} = 4 \text{ C.Q.F.D.}$$

4. f'(0) = 1: l'équation de la tangente à C en A est donc : y - 2 = 1(x - 0) soit : y = x + 2.

B. Sa dérivée

1. f' est définie sur \mathbb{R} . De plus, on sait que pour tout x réel, f(-x) + f(x) = 4, soit en dérivant : $-f'(x) + f'(x) = 0 \Rightarrow f'(-x) = f'(x) : f'$ est une fonction paire.

2.
$$f'(x) = 4 \frac{e^x}{\left(e^x + 1\right)^2} = 4 \frac{e^{-x}}{(1 + e^{-x})^2}$$
 donc $\lim_{x \to +\infty} f'(x) = 0$; de plus, $\lim_{x \to -\infty} f'(x) = 0$: C' admet donc

une asymptote horizontale, d'équation y = 0, en $+\infty$ et en $-\infty$.

3.
$$f'''(x) = 4 \frac{e^x (e^x + 1)^2 - e^x \times 2e^x (e^x + 1)}{(e^x + 1)^4} = 4 \frac{e^x (e^x + 1) - e^x \times 2e^x}{(e^x + 1)^3}$$
, $f''(x) = 4 \frac{e^x - e^{2x}}{(e^x + 1)^3}$.

f''(x) est du signe de $e^x - e^{2x}$: $e^x - e^{2x} > 0 \Leftrightarrow e^x > e^{2x} \Leftrightarrow x > 2x \Leftrightarrow 0 > x$.

Tableau de variations de f':

X	$-\infty$		0		$+\infty$
f"(x)	+		0	_	
f'(x)		>	1	_	
	0			<i></i>	0

5. Il semble que C se trouve au-dessus de C'. Pour le montrer, étudions le signe de f(x) - f'(x):

$$f(x) - f'(x) = 4 \frac{e^x}{\left(e^x + 1\right)} - 4 \frac{e^x}{\left(e^x + 1\right)^2} = 4 \frac{e^x\left(e^x + 1\right) - e^x}{\left(e^x + 1\right)^2} = 4 \frac{e^{2x}}{\left(e^x + 1\right)^2} \quad ; \quad f(x) - f'(x) > 0 \quad \text{donc C est au-}$$

dessus de C'.

C. Une de ses primitives

1. a. f est dérivable sur \mathbb{R} , donc elle admet une infinité de primitives.

1. b. Soit F une primitive de f sur \mathbb{R} . f est sa dérivée, et f(x)>0 pour tout x réel donc \underline{F} est une fonction strictement croissante sur \mathbb{R}

2. On reconnaît dans l'écriture de f(x) le modèle : $f(x) = 4 \frac{u'(x)}{u(x)}$, avec $u(x) = e^x + 1$

Les primitives F de f sur \mathbb{R} sont donc de la forme : $F(x) = 4\ln(\left|e^x + 1\right|) + K$, $K \in \mathbb{R}$. Or, pour tout x réel, $e^x + 1 > 0$ donc $F(x) = 4\ln(\left|e^x + 1\right|) + K$, $K \in \mathbb{R}$.

De plus, F(0) = 0 donc : $4 \ln (2) + K = 0$; c'est à dire $K = -4 \ln 2$. Il vient donc : $F(x) = 4 \ln (e^x + 1) - 4 \ln 2$. 3.a. $\lim_{x \to +\infty} F(x) = +\infty$; $\lim_{x \to -\infty} F(x) = -4 \ln 2$. Γ admet donc une asymptote horizontale, d'équation $V = -4 \ln 2$, en $-\infty$.

3.b. Etude de l'asymptote oblique en $+\infty$:

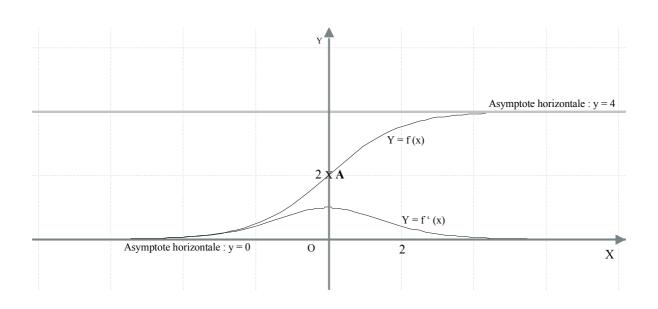
$$\lim_{x \to +\infty} (F(x) - (4x - 4\ln 2)) = \lim_{x \to +\infty} (4\ln(e^x + 1) - 4\ln 2 - 4x + 4\ln 2) = \lim_{x \to +\infty} (4\ln(e^x (1 + e^{-x})) - 4x)$$
$$= \lim_{x \to +\infty} (4x + 4\ln(1 + e^{-x}) - 4x) = \lim_{x \to +\infty} (4\ln(1 + e^{-x})) = 0$$

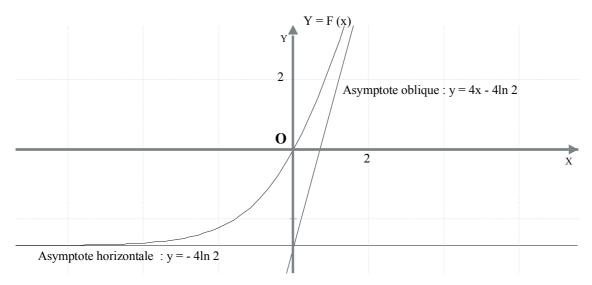
 Γ admet donc une asymptote oblique, d'équation $y = 4x - 4 \ln 2$, en $+\infty$.

4. Tableau de variations de F:

X	$-\infty$ $+\infty$
f(x)	+
F(x)	→ +∞
	- 4 ln 2

Graphiques





1. 19. Antilles 09/2008 7 points

Soit *f* la fonction définie sur \mathbb{R} par : $f(x) = x + 2 - \frac{4e^x}{e^x + 3}$.

On désigne par C sa courbe représentative dans le plan rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité graphique 2 cm.

- 1. a. Déterminer la limite de f en $-\infty$.
- b. Démontrer que la droite D_1 d'équation y = x + 2 est asymptote à la courbe C.
- c. Étudier la position de C par rapport à D₁.
- 2. a. On note f' la fonction dérivée de f. Calculer f'(x) et montrer que, pour tout réel x, on a :

$$f'(x) = \left(\frac{e^x - 3}{e^x + 3}\right)^2.$$

- b. Étudier les variations de f sur \mathbb{R} et dresser le tableau de variations de la fonction f.
- 3. a. Que peut-on dire de la tangente D₂ à la courbe C au point *I* d'abscisse ln3 ?
- b. En utilisant les variations de la fonction f, étudier la position de la courbe C par rapport à D_2 .
- 4. a. Montrer que la tangente D_3 à la courbe C au point d'abscisse 0 a pour équation $y = \frac{1}{4}x + 1$.
- b. Étudier la position de la courbe C par rapport à la tangente D_3 sur l'intervalle $]-\infty$; $\ln 3$]. On pourra

utiliser la dérivée seconde de f notée f " définie pour tout x de \mathbb{R} par : f " $\left(x\right) = \frac{12e^{x}\left(e^{x}-3\right)}{\left(e^{x}+3\right)^{3}}$.

- 5. On admet que le point I est centre de symétrie de la courbe C. Tracer la courbe C, les tangentes D_2 , D_3 et les asymptotes à la courbe C. On rappelle que l'unité graphique choisie est 2 cm.
- 6. a. Déterminer une primitive de la fonction g définie sur \mathbb{R} par : $g(x) = \frac{e^x}{e^x + 3}$.
- b. Soit λ un réel strictement négatif.

On note $A(\lambda)$ l'aire, en unités d'aire, du domaine limité par D_1 , C et les droites d'équations $x = \lambda$ et x = 0. Montrer que $A(\lambda) = 4\ln 4 - 4\ln(e^{\lambda} + 3)$.

c. Calculer $\lim_{\lambda \to -\infty} A(\lambda)$.

Correction

$$f(x) = x + 2 - \frac{4e^x}{e^x + 3}$$
.

1. a.
$$\lim_{x \to -\infty} f(x) = -\infty + 2 - \frac{4 \times 0}{0 + 3} = -\infty$$
.

b.
$$\lim_{x \to -\infty} (f(x) - x - 2) = \lim_{x \to -\infty} \frac{4e^x}{e^x + 3} = 0$$
.

c.
$$f(x) - (x+2) = -\frac{4e^x}{e^x + 3} < 0$$
 car $e^x > 0$. C est au-dessus de D_1 .

2. a.
$$f'(x) = 1 - 4 \frac{e^x(e^x + 3) - e^x(e^x)}{(e^x + 3)^2} = 1 - \frac{12e^x}{(e^x + 3)^2} = \frac{(e^x + 3)^2 - 12e^x}{(e^x + 3)^2} = \frac{e^{2x} + 6e^x + 9 - 12e^x}{(e^x + 3)^2} = \frac{(e^x - 3)^2}{(e^x + 3)^2}.$$

b. f' est positive sur \mathbb{R} , f est croissante. $\lim_{x \to +\infty} f(x) = +\infty + 2 - 4 \lim_{x \to +\infty} \frac{1}{1 + 3e^{-x}} = +\infty - 4 = +\infty$.

(Remarque : comme $\lim_{x\to +\infty} \frac{4e^x}{e^x+3} = \lim_{x\to +\infty} \frac{4}{1+3e^{-x}} = 4$, la droite y=x+2-4=x-2 est asymptote en $+\infty$.)

X	-∞	$+\infty$
f'(x)	+	
f(x)	8 8	8+

3. a. D_2 : $f'(\ln 3) = \left(\frac{e^{\ln 3} - 3}{e^{\ln 3} + 3}\right)^2 = 0$ donc tangente horizontale.

b. Comme f est croissante, C est en-dessous de D_2 lorsque $x < \ln 3$ et au-dessus lorsque $x > \ln 3$.

4. a.
$$f'(0) = \left(\frac{e^0 - 3}{e^0 + 3}\right)^2 = \left(\frac{-2}{4}\right)^2 = \frac{1}{4}$$
, $f(0) = 2 - \frac{4}{1+3} = 1$, $y = f'(0)(x-0) + f(0) = \frac{1}{4}x + 1$.

b. Posons
$$g(x) = f(x) - \left(\frac{1}{4}x + 1\right) \Rightarrow g'(x) = f'(x) - \frac{1}{4} \Rightarrow g''(x) = f''(x)$$
.

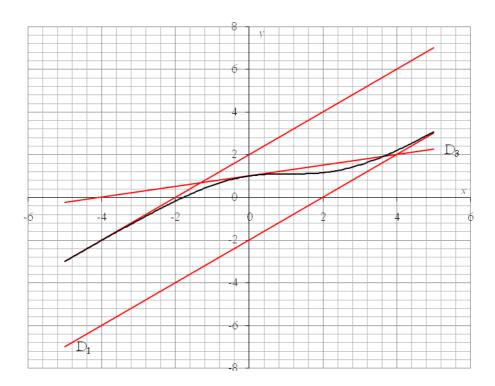
Sur l'intervalle $]-\infty$; $\ln 3$], $f''(x) = \frac{12e^x(e^x-3)}{(e^x+3)^3}$ est < 0, de même que g''. g' est décroissante et vaut 0

lorsque x = 0; g' est donc positive avant 0, négative après 0; g est croissante avant 0, décroissante après 0; comme g(0)=0, g est toujours négative donc C est en dessous de D_3 .

\mathcal{X}	$-\infty$		0		ln3
g"		-			
g'			0		
signe g'		+	0	_	
g		→	0		

signe g	_	0	-	

5.



6. a. La dérivée de $e^x + 3$ est e^x , g est de la forme $\frac{u'}{u}$, une primitive de g est $\ln(e^x + 3)$.

b.
$$A(\lambda) = \int_{\lambda}^{0} f(x) - (x+2) dx = \int_{\lambda}^{0} -4 \frac{e^{x}}{e^{x} + 3} dx = -4 \left[\ln(e^{x} + 3) \right]_{\lambda}^{0} = -4 \ln(e^{\lambda} + 3) + 4 \ln(e^{0} + 3)$$
, soit $A(\lambda) = 4 \ln 4 - 4 \ln(e^{\lambda} + 3)$.

c.
$$\lim_{\lambda \to \infty} A(\lambda) = 4 \ln 4 - 4 \ln (0 + 3) = 4 \ln 4 - 4 \ln 3$$
.

1. 20. ROC+fonction intégrale, Am. du Nord 2007

7 points

1. Restitution organisée de connaissances.

L'objet de cette question est de démontrer que $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$.

On supposera connus les résultats suivants :

- * la fonction exponentielle est dérivable sur $\,\mathbb{R}\,$ et est égale à sa fonction dérivée ;
- * $e^0 = 1$;
- * pour tout réel x, on a $e^x > x$;
- * soient deux fonctions φ et ψ définies sur l'intervalle $[A; +\infty[$ où A est un réel positif. Si, pour tout x de $[A; +\infty[$, on a $\psi(x) \le \varphi(x)$ et si $\lim_{x \to +\infty} \psi(x) = +\infty$ alors $\lim_{x \to +\infty} \varphi(x) = +\infty$.
- a. On considère la fonction g définie sur $[0; +\infty[$ par $g(x) = e^x \frac{x^2}{2}]$.

Montrer que pour tout x de $[0; +\infty[, g(x) \ge 0]$.

b. En déduire que
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
.

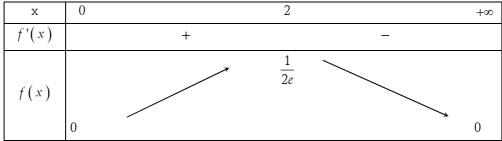
- 2. On appelle f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{1}{4}xe^{-\frac{x}{2}}$. On appelle C sa courbe représentative dans un repère orthogonal $(O; \vec{i}, \vec{j})$. La courbe C est représentée ci-dessous.
- a. Montrer que f est positive sur $[0; +\infty[$.
- b. Déterminer la limite de f en $+\infty$. En déduire une conséquence graphique pour C.
- c. Etudier les variations de f puis dresser son tableau de variations sur $\begin{bmatrix} 0 \\ ; +\infty \end{bmatrix}$.
- 3. On considère la fonction F définie sur $[0; +\infty[$ par $F(x) = \int_0^x f(t) dt$.
- a. Montrer que F est une fonction croissante sur $\begin{bmatrix} 0 ; +\infty \end{bmatrix}$.
- b. Montrer que $F(x) = 1 e^{-\frac{x}{2}} \frac{x}{2}e^{-\frac{x}{2}}$.
- c. Calculer la limite de F en $+\infty$ et dresser le tableau de variations de F sur $\left[\ 0\ ; +\infty\right[$.
- d. Justifier l'existence d'un unique réel α tel que $F(\alpha) = 0,5$. A l'aide de la calculatrice, déterminer une valeur approchée de α à 10^{-2} près par excès.
- 4. Soit n un entier naturel non nul. On note A_n l'aire en unités d'aire de la partie du plan située entre l'axe des abscisses, la courbe C et les droites d'équations x=0 et x=n. Déterminer le plus petit entier naturel n tel que $A_n \ge 0,5$.



Correction

- 1. On numérote les propriétés :
- (1) la fonction exponentielle est dérivable sur $\mathbb R$ et est égale à sa fonction dérivée ;
- (2) $e^0 = 1$;

- (3) pour tout réel x, on a $e^x > x$;
- (4) soient deux fonctions φ et ψ définies sur l'intervalle $[A; +\infty[$ où A est un réel positif. Si, pour tout x de $[A; +\infty[$, on a $\psi(x) \le \varphi(x)$ et si $\lim_{x \to +\infty} \psi(x) = +\infty$ alors $\lim_{x \to +\infty} \varphi(x) = +\infty$.
- a. La dérivée de g est $g'(x) = e^x x$ (utilisation de (1)) qui est positive (utilisation de (2)); par ailleurs g(0) = 1 (utilisation de (3)), soit $g(x) \ge 1$ et donc $g(x) \ge 0$.
- b. On a donc $e^x \ge \frac{x^2}{2} \Rightarrow \frac{e^x}{x} \ge \frac{x}{2}$; comme $\frac{x}{2}$ tend vers $+\infty$ en $+\infty$, $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ (utilisation de (4)).
- 2. $f(x) = \frac{1}{4}xe^{-\frac{x}{2}}$.
- a. L'exponentielle est toujours positive ; sur $[0; +\infty[$, il en est de même de $\frac{1}{4}x$ donc $f(x) \ge 0$.
- b. On pose $X = \frac{x}{2}$, $\lim_{x \to +\infty} f(x) = f(x) = \frac{1}{2} \lim_{x \to +\infty} Xe^{-x} = 0$ (croissances comparées). La courbe de f admet l'axe (Ox) comme asymptote horizontale.
- c. $f'(x) = \frac{1}{4} \left[e^{-\frac{x}{2}} \frac{1}{2} x e^{-\frac{x}{2}} \right] = \frac{1}{8} \left[2 x \right] e^{-\frac{x}{2}}$ donc positive avant 2, négative après. $f(2) = \frac{1}{2} e^{-1} = \frac{1}{2e}$.



- 3. a. F'(x) = f(x) (cours...) qui est positive sur $[0; +\infty[$ comme le montre le tableau de variation.
- b. Soit on intègre par parties, soit on dérive $F(x) = 1 e^{-\frac{x}{2}} \frac{x}{2}e^{-\frac{x}{2}}$ en vérifiant que F(0) = 0.

$$F(0) = 1 - e^{0} - 0e^{0} = 1 - 1 = 0 \; ; \; F'(x) = \frac{1}{2}e^{-\frac{x}{2}} - \left[\frac{1}{2}e^{-\frac{x}{2}} - \frac{x}{2}\left(-\frac{1}{2}\right)e^{-\frac{x}{2}}\right] = \frac{1}{4}xe^{-\frac{x}{2}} = f(x).$$

c. Tous les termes contenant $e^{-\frac{x}{2}}$ tendent vers 0 donc F tend vers 1.

Х	0	+∞
f(x)	+	
F(x)	0	1

- d. F est monotone strictement croissante, continue sur $[0; +\infty[$; 0<0,5<1, il existe donc un unique α dont l'image par F est 0,5. La calculatrice donne: $f(3,35)\approx 0,499$ et $f(3,36)\approx 0,501$; on prend $\alpha\approx 3,36$.
- 4. $A_n = F(n) F(0) = F(n)$; on a donc $A_n \ge 0.5$ lorsque $n \ge \alpha$, soit pour n = 4.

1. 21. Equation différentielle, équation fonctionnelle et sinus hyperbolique, La Réunion, juin 2004 6 points

On désigne par f une fonction dérivable sur $\mathbb R$ et par f sa fonction dérivée. Ces fonctions vérifient les propriétés suivantes :

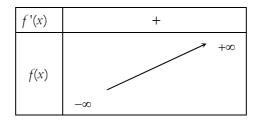
- (1) Pour tout nombre réel x, $(f'(x))^2 (f(x))^2 = 1$.
- (2) f'(0) = 1
- (3) La fonction f' est dérivable sur $\mathbb R$.

On rappelle que la dérivée de u^n est $nu'u^{n-1}$.

- 1. a. Démontrer que, pour tout nombre réel x, $f'(x) \neq 0$.
- b. Calculer f(0).
- 2. En dérivant chaque membre de l'égalité de la proposition (1), démontrer que :
 - (4) Pour tout nombre réel x, f''(x) = f(x).
- où f " désigne la dérivée seconde de la fonction f.
- 3. On pose u = f' + f et v = f' f.
- a. Calculer u(0) et v(0).
- b. Démontrer que u' = u et v' = -v.
- c. En déduire les fonctions u et v.
- d. En déduire que, pour tout réel x, $f(x) = \frac{e^x e^{-x}}{2}$.
- 4. a. Etudier les limites de la fonction f en $+\infty$ et $-\infty$.
- b. Dresser le tableau de variation de la fonction f.
- 5. a. Soit m un nombre réel. Démontrer que l'équation f(x) = m a une unique solution α dans \mathbb{R} .
- b. Déterminer cette solution lorsque m=3 (on en donnera une valeur approchée décimale à 10^{-2} près).

Correction

- 1. a. $(f'(x))^2 = (f(x))^2 + 1$: ce nombre est toujours strictement positif (à cause du 1), il ne peut s'annuler.
- $[f'(x)]^2 \neq 0 \Rightarrow f'(x) \neq 0.$
- b. Comme f'(0) = 1, en remplaçant x par 0 dans (1), on a $1 (f(0))^2 = 1 \Rightarrow f(0) = 0$.
- 2. $2f''(x)(f'(x))^{2-1} 2f'(x)(f(x))^{2-1} = 0 \Leftrightarrow 2f''(x)f'(x) 2f'(x)f(x) = 0 \Leftrightarrow f''(x) = f(x)$ après simplification par 2f'(x) qui n'est pas nul.
- 3. a. u(0) = f'(0) + f(0) = 1, v(0) = f'(0) f(0) = 1 0 = 1.
- b. u' = f'' + f' = f + f' = u et v' = f'' f' = f f' = -v.
- c. $u = Ce^x$; avec u(0) = 1, on a C = 1; de même $v = Ce^{-x}$; avec v(0) = 1 on a $v = e^{-x}$.
- d. Au final $\begin{cases} u = e^x \\ v = e^{-x} \end{cases} \Rightarrow \begin{cases} f' + f = e^x \\ f' f = e^{-x} \end{cases} \Rightarrow 2f = e^x e^{-x} \Rightarrow f(x) = \frac{e^x e^{-x}}{2}.$
- 4. a. $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x e^{-x}}{2} = \frac{1}{2} (+\infty 0) = +\infty$, $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x e^{-x}}{2} = \frac{1}{2} (0 \infty) = -\infty$.
- b. $f'(x) = \frac{1}{2} (e^x + e^{-x}) > 0$.



5. a. Deux possibilités : par lecture du TV, par le calcul.

Comme f est continue, monotone strictement croissante de \mathbb{R} vers \mathbb{R} , elle est bijective et l'équation f(x) = m a une unique solution pour tout m.

Par le calcul : on pose $e^x = X$, ce qui donne $\frac{1}{2}\left(X - \frac{1}{X}\right) = m \Leftrightarrow X^2 - 2mX - 1 = 0$: $\Delta = 4m^2 + 4 > 0$ d'où

$$X_1 = \frac{2m + \sqrt{4m^2 + 4}}{2} = m + \sqrt{m^2 + 1} > 0, X_2 = \frac{2m - \sqrt{4m^2 + 4}}{2} = m - \sqrt{m^2 + 1} < 0.$$

On revient à e^x : on ne peut avoir $e^x = X_2$ il reste simplement $e^x = m + \sqrt{m^2 + 1} \Leftrightarrow x = \ln\left(m + \sqrt{m^2 + 1}\right)$.

b. Avec la première manière on le fait à la calculatrice et on trouve 1,82. La deuxième méthode donne $ln(3+\sqrt{10})$.

1. 22. Exp, équation, suite réc, Am. du Sud, juin 2004

7 points

Soit la fonction f définie par $f(x) = xe^{-x}$ sur $[0; +\infty[$.

On note Γ la courbe représentative de la fonction f dans un repère orthonormé $(O; \vec{i}, \vec{j})$ (unité graphique : 10 cm).

Partie A

- 1. a. Déterminer la limite de f en $+\infty$.
- b. Etudier les variations de f et dresser son tableau de variations.
- c. construire Γ .
- 2. a. Montrer que pour tout réel m de l'intervalle $\left]0; \frac{1}{e}\right[$, l'équation f(x) = m admet deux solutions.
- b. Dans le cas où $m=\frac{1}{4}$, on nomme α et β les solutions, (avec $\alpha<\beta$). Déterminer un encadrement d'amplitude 10^{-2} de α .
- c. Résoudre l'équation f(x) = m dans le cas où m = 0 et $m = \frac{1}{e}$.

Partie B

On considère la suite (u_n) définie sur $\mathbb N$ par $\begin{cases} u_0 = \alpha \\ u_{n+1} = u_n e^{-u_n} \end{cases}$ où α est le réel défini à la question A. 2. b.

- a. Montrer par récurrence que, pour tout entier naturel $n,\ u_n>0$.
- b. Montrer que la suite (u_n) est décroissante.
- c. La suite (u_n) est-elle convergente $\stackrel{?}{\sim}$ Si oui, déterminer sa limite.
- 2. On considère la suite (w_n) définie sur \mathbb{N} par $w_n = \ln u_n$.
- a. Montrer que, pour tout entier naturel n, on a $u_n = w_n w_{n+1}$.
- b. On pose $S_n = u_0 + u_1 + ... + u_n$. Montrer que $S_n = w_0 w_{n+1}$.

- c. En déduire $\lim_{n\to\infty} S_n$.
- 3. On considère la suite (v_n) définie sur $\mathbb N$ par son premier terme v_0 , $v_0>0$, et pour tout entier n, par $v_{n+1}=v_ne^{-v_n}$. Existe-t-il une valeur de v_0 différente de α telle que, pour tout entier $n\geq 1$, on ait $u_n=v_n$? Si oui, préciser laquelle.

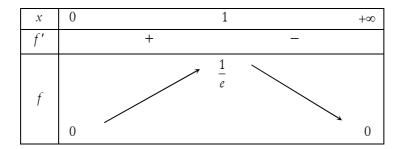
Correction

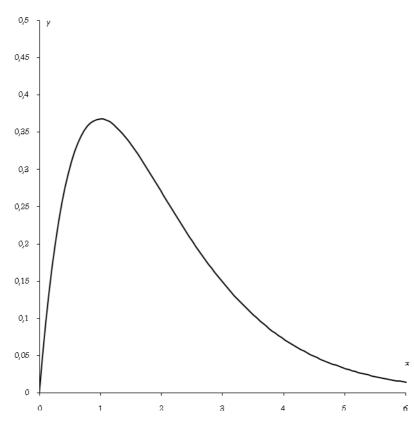
Partie A

1. a.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} xe^{-x} = \lim_{X \to -\infty} -Xe^{X} = 0$$
.

b. $f'(x) = e^{-x} - xe^{-x} = (1-x)e^{-x}$. L'ex ponentielle est positive, f' est du signe de 1-x.

c.





2. a. La droite d'équation y=m coupe la courbe Γ en deux points, l'équation f(x)=m a donc bien deux solutions. Plus scientifiquement, lorsque m est dans $\left]0;\frac{1}{e}\right[$, il a deux antécédents par f: un antécédent

entre 0 et 1 car f est croissante et continue de]0;1[vers $]0;\frac{1}{e}[$, l'autre entre 1 et $+\infty$ car f est continue, monotone, décroissante de $]1;+\infty[$ vers $]0;\frac{1}{e}[$.

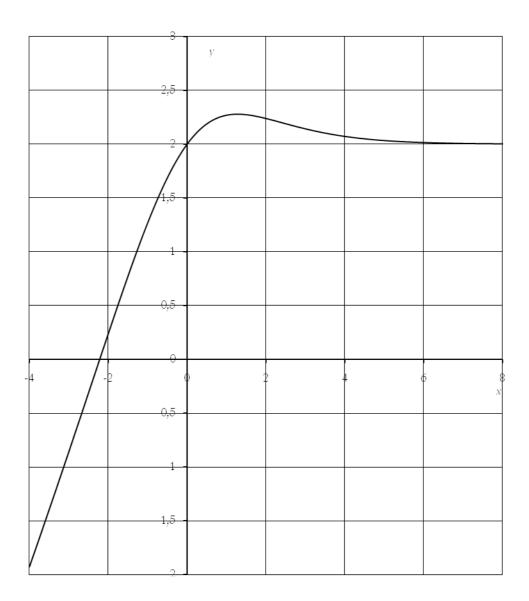
- b. On cherche quand f(x) encadre 1/4: f(0,3573) = 0,2499 et f(0,3574) = 0,25001.
- c. f(x) = 0 a l'unique solution 0 (tableau de variation) et $f(x) = \frac{1}{e}$ a pour unique solution 1.

Partie B
$$\begin{cases} u_0 = \alpha \\ u_{n+1} = u_n e^{-u_n} \end{cases}$$

- a. Comme $u_0 = \alpha > 0$ et que si $u_n > 0$ alors $u_n e^{-u_n} > 0$, il est clair que $u_n > 0$ pour tout n.
- b. On peut faire $u_{n+1} u_n = u_n e^{-u_n} u_n = u_n (e^{-u_n} 1)$; or $u_n > 0 \Leftrightarrow -u_n < 0 \Leftrightarrow e^{-u_n} < 1 \Leftrightarrow e^{-u_n} 1 < 0$ donc la suite (u_n) est décroissante.
- c. (u_n) est décroissante et minorée par 0, elle converge donc. Soit l sa limite, on a $le^{-l}=l \Leftrightarrow \begin{cases} l=0 \\ e^{-l}=1 \Leftrightarrow -l=0 \end{cases}$; la seule possibilité est que l=0.
- 2. $w_n = \ln u_n$.
- a. Prenons le logarithme de $u_{n+1} = u_n e^{-u_n} \Leftrightarrow \ln u_{n+1} = \ln u_n + \ln e^{-u_n} = \ln u_n u_n \Leftrightarrow w_{n+1} = w_n u_n$, soit $u_n = w_n w_{n+1}$.
- b. $S_n = u_0 + u_1 + ... + u_n = w_0 w_1 + w_1 w_2 + ... + w_{n-1} w_n + w_n w_{n+1} = w_0 w_{n+1}$.
- c. Comme u_n tend vers 0, w_n tend vers $-\infty$, donc S_n tend vers $+\infty$.
- 3. En fait à partir de $u_0 = \alpha$ on a $u_1 = f(\alpha) = \frac{1}{4}$; mais $f(\beta) = \frac{1}{4}$, donc si l'on prend $v_0 = \beta$, à partir du rang 1 les deux suites seront confondues.
- 1. 23. Exp et aire

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{x}{e^x + 1} + 2$.

On désigne par C_f la courbe représentative de f dans un repère orthogonal $(O; \vec{i}, \vec{j})$; cette représentation est fournie ci-dessous.



- 1. Déterminer la limite de f en $+\infty$ et interpréter graphiquement ce résultat.
- 2. a. Déterminer la limite de f en $-\infty$.
- b. Démontrer que la droite (d) d'équation y = x + 2 est une asymptote pour C_f .
- c. Étudier la position de C_f par rapport à (d).
- 3. Pour tout entier naturel n, tel que $n \ge 2$, on note D_n l'ensemble des points M(x, y) du plan, dont les coordonnées vérifient : $2 \le x \le n$ et $2 \le y \le f(x)$ et on appelle A_n son aire, exprimée en unités d'aire.
- a. Faire apparaître D_5 sur la figure.
- b. Démontrer que pour tout x, tel que $x \ge 2$, on a : $\frac{7}{8}xe^{-x} \le \frac{x}{e^x + 1} \le xe^{-x}$.
- c. On pose $I_n = \int_2^n xe^{-x} dx$. À l'aide d'une intégration par parties, calculer I_n en fonction de n.
- d. Écrire un encadrement de A_n en fonction de I_n .
- e. On admet que A_n a une limite lorsque n tend vers $+\infty$. Déterminer la limite de I_n lorsque n tend vers $+\infty$. Que peut-on en déduire pour la limite de A_n lorsque n tend vers $+\infty$? Donner une interprétation géométrique de ce dernier résultat.

Correction

- 1. En $+\infty$, on a $\frac{x}{e^x} = \frac{1}{e^x/x} \to \frac{1}{+\infty} = 0$ d'où f tend vers 2. Asymptote horizontale y = 2.
- 2. a. En $-\infty$, e^x tend vers 0, f tend vers $-\infty$.

b.
$$f(x)-(x+2) = \frac{x}{e^x+1} + 2 - x - 2 = \frac{x-x(e^x+1)}{e^x+1} = \frac{xe^x}{e^x+1}$$
 tend vers 0 lorsque x tend vers $-\infty$.

- (d) est une asymptote pour C_f en $-\infty$
- c. Le signe de $f(x)-(x+2)=\frac{xe^x}{e^x+1}$ est celui de x, donc lorsque x est positif, C_f est au dessus de (d), lorsque x est négatif C_f est en dessous de (d).
- 3. a. C'est la zone comprise entre la courbe, les droites x = 2, x = 5 et y = 2.
- b. Comme $e^x + 1 > e^x$, on a $\frac{1}{e^x + 1} < \frac{1}{e^x} \Leftrightarrow \frac{x}{e^x + 1} < \frac{x}{e^x} = xe^{-x}$; pour l'inégalité de gauche, dvisons par x:

$$\frac{7}{8}e^{-x} \le \frac{1}{e^x + 1} \Leftrightarrow \frac{7}{8}e^{-x} \left(e^x + 1\right) \le 1 \Leftrightarrow \frac{7}{8} + \frac{7}{8}e^{-x} \le 1 \Leftrightarrow \frac{7}{8}e^{-x} \le \frac{1}{8} \Leftrightarrow e^{-x} \le \frac{1}{7} \Leftrightarrow -x \le -\ln 7 \Leftrightarrow x \ge \ln 7.$$

Or $x \ge 2$, c'est donc vrai.

c.
$$I_n = \int_2^n xe^{-x} dx = \left[-xe^{-x} \right]_2^n - \int_2^n -e^{-x} dx = \left[-xe^{-x} - e^{-x} \right]_2^n = -(n+1)e^{-n} + 3e^{-2}$$
.

d. On a
$$A_n = \int_2^n [f(x) - 2] dx = \int_2^n \frac{x}{e^{x+1}} dx \Rightarrow \int_2^n \frac{7}{8} x e^{-x} dx \le \int_2^n \frac{x}{e^{x+1}} dx \le \int_2^n x e^{-x} dx \Leftrightarrow \frac{7}{8} I_n \le A_n \le I_n$$
.

e. Lorsque n tend vers $+\infty$, I_n tend vers $3e^{-2}$ (croissances comparées). Par conséquent la limite de A_n est comprise entre $\frac{7}{8}3e^{-2}$ et $3e^{-2}$. Ceci donne un encadrement de l'aire comprise entre C_f , x=2 et y=2.

1. 24. Caractéristique de Exp et tangentes

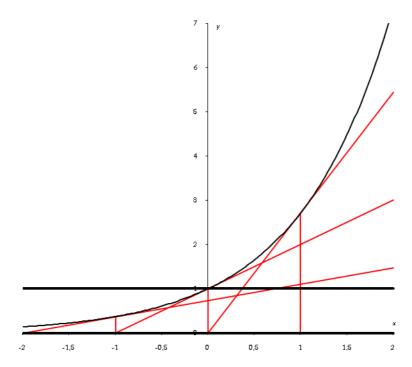
- 1. Dans un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité 2 cm tracer la courbe représentative (C) de la fonction exponentielle $(x \mapsto e^x)$ sur l'intervalle [-2; 2].
- 2. Tracer sur la même figure les tangentes à (C) aux points d'abscisses $x_1 = -1$, $x_2 = 0$ et $x_3 = 1$. Chacune de ces tangentes coupe l'axe horizontal en un point d'abscisse x_1' , x_2' , x_3' .

Mesurer à la règle les trois distances $x_i - x_i'$, i = 1, 2, 3. Que constatez-vous ξ (Les trois longueurs mesurées doivent apparaître clairement sur le graphique.)

- 3. Soit A un point de (C) d'abscisse a. Vérifiez que l'équation de la tangente (T) en A à (C) a pour équation $y = e^a x + (1-a)e^a$. Justifiez alors que le résultat du 2. est bien une constante que l'on précisera par le calcul.
- 4. On cherche désormais s'il y aurait d'autres courbes présentant cette propriété : soit une fonction f de courbe représentative (C), A un point de (C) d'abscisse a, (T) la tangente en A à (C) et a' l'abscisse du point d'intersection entre (T) et (Ox) quand il existe. On note f' la fonction dérivée de f.
- a. Donner l'équation de la tangente (T).
- b. Exprimer a' en fonction de a, f(a) et f'(a). En déduire a-a'.
- c. Soit k une constante réelle. Montrer que $a-a'=k \Leftrightarrow \frac{f(a)}{f'(a)}=k$. Résoudre cette équation et conclure.

Correction

1.



- 2. Les trois longueurs mesurées valent 1.
- 3. $f(a) = e^a$, $f'(a) = e^a$; $y = f'(a)(x-a) + f(a) = e^a(x-a) + e^a = e^ax + (1-a)e^a$.

Le point d'intersection entre (C) et (Ox) a pour abscisse x_0 : $e^a x_0 + (1-a)e^a = 0 \Leftrightarrow x_0 = \frac{(a-1)e^a}{e^a} = a-1$ d'où la distance entre a et x_0 : $a-x_0 = a-(a-1)=1$.

4. a.
$$y = f'(a)(x-a)+f(a)$$
.

b. Le point d'intersection entre la tangente et (Ox) a pour abscisse a':

$$0 = f'(a)(a'-a) + f(a) \Leftrightarrow a'-a = -\frac{f(a)}{f'(a)} \Leftrightarrow a-a' = \frac{f(a)}{f'(a)}.$$

c. On a donc bien $a-a'=k \Leftrightarrow \frac{f\left(a\right)}{f'\left(a\right)}=k$. En fait il s'agit simplement de l'équation différentielle $y'=\frac{1}{k}y$

dont les solutions sont de la forme $f(x) = Ce^{\frac{1}{k}x}$.

Par exemple pour la situation de départ on avait k=1 ($f(x)=e^x$) et l'écart mesuré était bien de 1. Ceci caractérise d'ailleurs les fonctions exponentielles.